
 1/6

NETLOGO 3.1.4. – QUICK GUIDE
Luis R. Izquierdo

Agents
The NetLogo world is made up of agents. Agents are beings that can follow instructions.
There are three types of agents:

� Turtles. Turtles are agents that move around in the world.
� Patches: The world is two dimensional and is divided up into a grid of patches. Each

patch is a square piece of "ground" over which turtles can move.
� The observer: The observer doesn't have a location - you can imagine it as looking

out over the world of turtles and patches.

Instructions
Instructions tell agents what to do. There are three characteristics that are useful to
remember about instructions:

a) Whether the instruction is implemented by the user (procedures), or whether it is
built into NetLogo (primitives). Once you define a procedure, you can use it
elsewhere in your program. The Primitives Dictionary has a complete list of built-in
instructions.

to setup

 clear-all ;; clear the world

 create-turtles 10 ;; make 10 new turtles

end

In this program, setup is a procedure, whereas clear-all and create-turtles

are both primitives.

b) Whether the instruction produces an output (reporters) or not (commands).

o A reporter computes a result and reports it. Most reporters are nouns or noun
phrases (e.g. “average-wealth”, “best-known-farmer”). These names are
preceded by the keyword to-report. The keyword end marks the end of the

instructions in the procedure.

to-report average-wealth

 report mean values-from turtles [wealth]

end

o A command is an action for an agent to carry out. Most commands begin with
verbs (e.g. "create", "die", "jump", "inspect", "clear"). These names are
preceded by the keyword to (instead of to-report). The keyword end

marks the end of the instructions in the procedure.

to go

 ask turtles

 [forward 1 ;; all turtles move forward one step

 right random 360] ;; ...and turn a random amount

end

c) Whether the instruction takes an input (or several inputs) or not. Inputs are values
that the instruction uses in carrying out its actions.

 2/6

to-report absolute-value [number]

 ifelse number >= 0

 [report number]

 [report 0 - number]

end

Variables
Variables are places to store values (such as numbers). A variable can be a global variable,
a turtle variable, a patch variable, or a local variable (local to a procedure). To change the
value of a variable you can use the set command (If you don't set the variable to any value,

it starts out storing a value of zero).

a) Global variables: If a variable is a global variable, there is only one value for the
variable, and every agent can access it. You can make a global variable by adding a
switch or a slider to your model, or by using the globals keyword at the beginning of

your code, like this:

globals [clock]

b) Turtle and patch variables: Each turtle has its own value for every turtle variable,
and each patch has its own value for every patch variable. Turtle (and patch)
variables can be built-in or defined by the user.

� Built-in turtle and patch variables: For example, all turtles have a color

variable, and all patches have a pcolor variable. If you set the variable, the

turtle or patch changes colour. Other built-in turtle variables are xcor, ycor,

and heading. Other built-in patch variables include pxcor and pycor. You

can find the complete list in the primitives dictionary.

� User-defined turtle and patch variables: You can also define new turtle and
patch variables using the turtles-own and patches-own keywords, like

this:

turtles-own [energy speed]

patches-own [friction]

c) Local variables: A local variable is defined and used only in the context of a
particular procedure or part of a procedure. To create a local variable, use the let

command. You can use this command anywhere. If you use it at the top of a
procedure, the variable will exist throughout the procedure. If you use it inside a set of
square brackets, for example inside an ask, then it will exist only inside those

brackets.

to swap-colors [turtle1 turtle2]

 let temp color-of turtle1

 set (color-of turtle1) (color-of turtle2)

 set (color-of turtle2) temp

end

Setting and reading the value of variables
Global variables can be read and set at any time by any agent. As well, a turtle can read and
set patch variables of the patch it is standing on. For example, this code:

ask turtles [set pcolor red]

 3/6

causes every turtle to make the patch it is standing on red. (Because patch variables are
shared by turtles in this way, you can't have a turtle variable and a patch variable with the
same name.)

In other situations where you want an agent to read or set a different agent's variable, you
put -of after the variable name and then specify which agent you mean. Examples:

set color-of turtle 5 red

 ;; turtle with ID number 5 turns red

set pcolor-of patch 2 3 green

 ;; patch with pxcor = 2 and pycor = 3 turns green

ask turtles [set pcolor-of patch-at 1 0 blue]

 ;; every turtle turns the patch to its east blue

ask patches with [any? turtles-here]

 [set color-of one-of turtles-here yellow]

 ;; on every patch, a random turtle turns yellow

Ask
NetLogo uses the ask command to specify commands that are to be run by turtles or

patches. Usually, the observer uses ask to ask all turtles or all patches to run commands.

Here's an example of the use of ask syntax in a NetLogo procedure:

to setup

 clear-all ;; clear the world

 create-turtles 100 ;; create 100 new turtles

 ask turtles

 [set color red ;; turn them red

 right random-float 360 ;; give them random headings

 forward 50] ;; spread them around

 ask patches

 [if (pxcor > 0) ;; patches on the right side

 [set pcolor green]] ;; of the view turn green

end

You can also use ask to have an individual turtle or patch run commands. The reporters

turtle, patch, and patch-at are useful for this technique. For example:

to setup

 clear-all

 create-turtles 3 ;; make 3 turtles

 ask turtle 0 ;; tell the first one...

 [fd 1] ;; ...to go forward

 ask turtle 1 ;; tell the second one...

 [set color green] ;; ...to become green

 ask patch 2 -2 ;; ask the patch at (2,-2)

 [set pcolor blue] ;; ...to become blue

 ask turtle 0 ;; ask the first turtle

 [ask patch-at 1 0 ;; ...to ask patch to the east

 [set pcolor red]] ;; ...to become red

end

 4/6

Agentsets
An agentset is a set of agents that can contain either turtles or patches, but not both at once.
An agentset is not in any particular order. In fact, it’s always in a random order1. What's
powerful about the agentset concept is that you can construct agentsets that contain only
some turtles or some patches. For example, all the red turtles, or the patches with pxcor

evenly divisible by five. These agentsets can then be used by ask or by various reporters

that take agentsets as inputs.

One way is to use turtles-here or turtles-at, to make an agentset containing only the

turtles on my patch, or only the turtles on some other particular patch. Here are some more
examples of how to make agentsets:

turtles with [color = red] ;; all red turtles

turtles-here with [color = red] ;; all red turtles on my patch

patches with [pxcor > 0] ;; patches on right side of view

turtles in-radius 3 ;; all turtles less than 3 patches away

patches at-points [[1 0] [0 1] [-1 0] [0 -1]]

 ;; the four patches to the east, north, west, and south

neighbors4 ;; shorthand for those four patches

Once you have created an agentset, here are some simple things you can do:

� Use ask to make the agents in the agentset do something.

� Use any? to see if the agentset is empty.

� Use count to find out exactly how many agents are in the set.

Here are some more complex things you can do:

set color-of one-of turtles green

 ;; one-of reports a random agent from an agentset

ask max-one-of turtles [sum assets] [die]

 ;; max-one-of agentset [reporter] reports an agent in the

 ;; agentset that has the highest value for the given reporter

show max values-from turtles [sum assets]

 ;; values-from agentset [reporter] reports a list that contains

 ;; the value of the reporter for each agent in the agentset.

Synchronization
In NetLogo, by default, commands are executed asynchronously; each turtle or patch does
its list of commands as fast as it can. To be clear, consider the following code:

ask turtles

 [forward random 10

 do-stuff]

1
 If you want agents to do something in a fixed order, you can make a list of the agents instead.

 5/6

Since the turtles will take varying amounts of time to move, they'll begin do-stuff at

different times. If you want all turtles to wait after moving until all the other turtles are done
moving, before executing do-stuff, then you can write it this way:

ask turtles [fd random 10]

ask turtles [do-stuff]

Then the turtles all begin do-stuff at the same time. Finally, if you want agents to execute

a set of commands in a fixed order, then you have to convert the agentset into a list. There
are two primitives that help you do this, sort and sort-by.

set my-list-of-agents sort-by [size-of ?1 < size-of ?2] turtles

 ;; This sets my-list-of-agents to a list of turtles sorted in

 ;; ascending order by their turtle variable size.

foreach my-list-of-agents [

 ask ? [

 forward random 10

 do-stuff]

]

]

If you use foreach like above, the agents in the list run the commands inside the ask

sequentially, not concurrently. Each agent finishes the commands before the next agent
begins them. See also: without-interruption.

Lists
In the simplest models, each variable holds only one piece of information, usually a number
or a string. The list feature lets you store multiple pieces of information in a single variable by
collecting those pieces of information in a list. Each value in the list can be any type of value:
a number, a string, an agent, an agentset, or even another list.

Constant lists
You can make a list by simply putting the values you want in the list between brackets, like
this: set mylist [2 4 6 8].

Building lists on the fly
If you want to make a list in which the values are determined by reporters, as opposed to
being a series of constants, use the list reporter. The list reporter accepts two other

reporters, runs them, and reports the results as a list.

set random-list list (random 10) (random 20)

To make longer or shorter lists, you can use the list reporter with fewer or more than two
inputs, but in order to do so, you must enclose the entire call in parentheses, e.g.:

(list random 10)

(list random 10 random 20 random 30)

See also: n-values, values-from, and sentence.

Changing list items
Technically, lists can't be modified, but you can construct new lists based on old lists. If you
want the new list to replace the old list, use set. For example:

set mylist [2 7 5 Bob [3 0 -2]] ;; mylist is now [2 7 5 Bob [3 0 -2]]

set mylist replace-item 2 mylist 10 ;; mylist is now [2 7 10 Bob [3 0 -2]]

 6/6

See also: lput, fput, but-last, and but-first.

Iterating over lists
If you want to do some operation on each item in a list in turn, the foreach command and

the map reporter may be helpful. foreach is used to run a command or commands on each

item in a list. It takes an input list and a block of commands, like this:

foreach [2 4 6]

 [crt ?

 show "created " + ? + " turtles"]

=> created 2 turtles => created 4 turtles => created 6 turtles

map is similar to foreach, but it is a reporter. It takes an input list and another reporter.

show map [round ?] [1.2 2.2 2.7] ;; prints [1 2 3]

map reports a list containing the results of applying the reporter to each item in the input list.

Again, use ? to refer to the current item in the list. See also: repeat and while.

Skeleton of many NetLogo Models
globals […] ;; global variables (also defined with sliders, …)

turtles-own […] ;; user-defined turtle variables (also <breeds>-own)

patches-own […] ;; user-defined patch variables

…

to setup

 clear-all … setup-patches … setup-turtles … setup-graphs …

end

…

to go

 conduct-observer-procedure …

 ask turtles [conduct-turtle-procedure] …

 ask patches [conduct-patch-procedure] …

 update-graphs ;; this may include update-view, update-plots…

end

…

to update-plots

 set-current-plot “myPlot” … set-current-plot-pen “myPen” …

 plot statistics …

end

…

to-report statistics

 … report theResultOfSomeFormula

end

Common Primitives

Turtle-related: die, forward (fd), myself, nobody, -of, other-turtles-here, patch-here, right (rt),
self, setxy, turtle, turtles, turtles-at, turtles-from, turtles-own, value-from.

Patch-related: clear-patches (cp), distance, myself, neighbors, neighbors4, nobody, patch-
at, patches, patches-from, patches-own, value-from.

Agentset primitives: any?, ask, count, histogram-from, is-agentset?, max-one-of, min-one-
of, n-of, one-of, sort, sort-by, with, with-max, with-min, values-from.

Control flow and logic primitives: and, foreach, if, ifelse, ifelse-value, let, loop, map, not,
or, repeat, report, stop, startup, wait, while, without-interruption, xor.

World primitives: clear-all (ca), clear-patches (cp), clear-turtles (ct), display, max-pxcor,
min-pxcor, no-display, random-pxcor, world-width, world-height.

