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Abstract

ABED is free and open-source software for simulating evolutionary game dynam-
ics in finite populations. We explain how ABED can be used to simulate a wide range
of dynamics considered in the literature and many novel dynamics. In doing so, we
introduce a general model of revisions for dynamic evolutionary models, one that de-
composes strategy updates into selection of candidate strategies, payoff determination,
and choice among candidates. Using examples, we explore ways in which simulations
can complement theory in increasing our understanding of strategic interactions in
finite populations.

1. Introduction

Evolutionary game theory now encompasses a wide range of models that differ both
in their basic assumptions and in the details of how shared assumptions are implemented.
This diversity can make comparing different models and the predictions they generate a
daunting task.
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ABED is free and open-source software for simulating evolutionary game dynamics
in finite populations. It implements a wide range of alternative modeling assumptions
within a single simple framework. This facilitates the comparison of different models,
and aids in identifying the specific assumptions that underlie observed behaviors.

ABED follows an agent-based approach, with each agent in the model being repre-
sented as a distinct object within the code. It implements a variety of revision protocols
(i.e., rules agents follow when updating their strategies), allowing it to simulate a sub-
stantial proportion of the dynamic evolutionary models appearing in the literature, as
well as many models that have yet to be analyzed (see Table 1). Nearly all parameters
in ABED can be modified while the program is running, making it easy to examine the
consequences of changing assumptions about how agents make decisions, and facilitating
the exploration of novel models.

To best relate ABED to existing formal models, we provide a general specification of
stochastic evolutionary game dynamics for finite populations under random or complete
matching. It is distinguished by a decomposition of decisions by revising agents into
three stages: selection of candidate strategies, determination of their payoffs, and choice
among the candidate strategies. This decomposition of revision protocols offers a unified
framework for understanding a range of models that might otherwise not be easy to
compare directly.

There is a large literature in physics that simulates evolutionary game models for which
analytical results are not available. In contrast, ABED focuses on a simple class of models
whose basic properties can be derived analytically in the large population limit. ABED
thus has some important limitations. It only concerns 2-player games under random
matching, so it cannot be used to simulate dynamics on networks or in spatial settings
(cf. Szabó and Fáth (2007), Roca et al. (2009a), Szolnoki et al. (2014), and Perc (2018)), and
interactions must be pairwise (cf. Perc et al. (2013)). Also, in ABED only the distribution of
strategies evolves in time. ABED is thus unable to simulate coevolutionary game dynamics
(cf. Pacheco et al. (2006) and Perc and Szolnoki (2010)), where the matching pattern or
other aspects of the interactions adjust in tandem with agents’ choices of strategies. Finally,
agents in ABED do not have memory, i.e. their decisions only depend on the population
distribution of strategies at the time of revision.

At the same time, ABED allows for some relatively unexplored modeling choices.
Rather than requiring complete matching, ABED permits the user to specify the number
of matches an agent engages in each period. A small but growing literature has shown
that behavior under limited matching can be strikingly different from behavior that arises
under the more common assumption of complete matching, and ABED is a powerful

–2–



I: Imitative/reproductive protocols
matching

complete matching limited matching
de

ci
si

on
m

et
ho

d
pairwise

replicator a

difference

linear-* replicator b

imitate the best c imitate the best
best

realization d

imitative logit e; stochastic sampling
logit

Fermi process f Fermi process g

positive Maynard Smith replicator h; stochastic sampling
proportional freq. dependent Moran process i Moran process j

II: Direct protocols
matching / sampling

complete limited matching
matching single sample multiple samples

de
ci

si
on

m
et

ho
d

pairwise
Smith k — —

difference

linear-* — — —

best response l sample best experienced
best

best response m payoff n

logit logit o sample logit p —

positive
— — —

proportional

aTaylor and Jonker (1978); Helbing (1992); Schlag (1998); Hofbauer (1995a).
bTaylor and Jonker (1978); Weibull (1995); Björnerstedt and Weibull (1996).
cHofbauer (1995a); Vega-Redondo (1997).
dIzquierdo and Izquierdo (2013); Loginov (2019).
eWeibull (1995).
fTraulsen and Hauert (2009).
gWoelfing and Traulsen (2009).
hMaynard Smith (1982).
iBinmore et al. (1995); Nowak et al. (2004); Taylor et al. (2004); Fudenberg et al. (2006); Fudenberg and Imhof (2008)
jWoelfing and Traulsen (2009).
kSmith (1984); Sandholm (2010a).
lGilboa and Matsui (1991); Hofbauer (1995b); Kandori and Rob (1995).

mSandholm (2001a); Kosfeld et al. (2002); Oyama et al. (2015).
nSethi (2000); Sandholm et al. (2019, 2018).
oBlume (1997); Fudenberg and Levine (1998); Hofbauer and Sandholm (2007).
pKreindler and Young (2013).

Table 1: Classes of revision protocols in ABED and principal instances of their dynamics.
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tool for simulating these sometimes cumbersome models.1 ABED also allows many
agents to revise simultaneously, allowing one not only to test the robustness of standard
approximation results to synchronized updating, but also to investigate applications in
which simultaneous revisions play a basic role.

This paper also examines some roles for agent-based simulations in evolutionary game
theory. Simulations are sometimes viewed with a skeptical eye in game and economic
theory. They can be criticized on the grounds that any simulation run concerns a specific
choice of parameter values, and that observing a certain outcome in a series of simulation
runs does not imply that this outcome must always occur. But while simulations cannot
prove theorems, they serve a variety of purposes that theorists should value. As theorem
statements often invoke limits, simulations can be used to evaluate robustness to real-
istic choices of parameters, serving a similar role as small-sample robustness checks in
econometrics. Simulations can help us interpret abstractly-defined solution concepts by
allowing us to flesh out the implicit assumptions that underlie them. Finally, simulations
are a powerful exploratory tool, one that can both suggest new models and provide con-
jectures for formal analysis. While one may object to some of the grander claims about the
role of computer simulations in social science, such objections do not exclude many other
ways that theory and simulation can serve complementary purposes. In what follows we
aim to illustrate certain aspects of this symbiosis.2

1.1 Exact analysis, approximation, and simulation of population dynamics

The canonical model in evolutionary game theory is one in which a finite population of
agents are recurrently matched to play a normal form game.3 Each agent is occasionally
given the opportunity to revise his pure strategy, basing his choice on the information
about payoffs and current aggregate behavior he has obtained. Formulating such a model
requires one to specify

(i) the number of agents N in the population,
(ii) the n-strategy normal form game the agents are recurrently matched to play,

1See Osborne and Rubinstein (1998), Sethi (2000), Sandholm (2001b), Kosfeld et al. (2002), Oyama et al.
(2015), Cárdenas et al. (2015), Mantilla et al. (2019), and Sandholm et al. (2019, 2018). ABED does not allow
the number of matches to be stochastic (cf. Sánchez and Cuesta (2005), Roca et al. (2006, 2009b), Traulsen
et al. (2007), and Oyama et al. (2015)).

2A recent paper by Adami et al. (2016a) has triggered a lively discussion about the role of agent-based
simulations in evolutionary game theory—see the responses by Bellomo and Elaiw (2016), Hilbe and
Traulsen (2016), Schuster (2016) and Tarnita (2016). These responses and the authors’ reply (Adami et al.
(2016b)) reveal a growing understanding of the complementary roles of simulation and analysis. Work by
Garcı́a and van Veelen (2016, 2018) nicely illustrates this complementarity.

3For a historical overview, see Sandholm (2010b, Ch. 1).
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(iii) the rule describing how revision opportunities are assigned to the agents, and
(iv) the protocol according to which agents revise their strategies when opportunities

to do so arise.
Of these items, the assignment rule (iii) and especially the revision protocol (iv) are partic-
ular to the evolutionary approach. In economic modeling, a revision protocol captures the
information agents possess when revising, how that information is obtained, and the way
that agents use the information to select a new strategy.4 In biological contexts, revision
is often interpreted as a death and birth event rather than as a conscious decision, and
assignment rules and revision protocols are specified accordingly.5

The state of the resulting evolutionary process can be described in two ways. One
can define the state to be the profile of strategies currently chosen by each of the N
agents. Alternatively, one can specify the state to be the population distribution of the
strategies chosen by these agents. As the name indicates, agent-based simulations start
from the former specification, while formal analyses generally use the more parsimonious
specification in terms of distributions over strategies, or population states.

In the latter approach, the analysis of the evolutionary process focuses on the behavior
of a Markov chain {XN

t } on the finite set of population states, a grid X N of mesh 1
N in

the simplex X ∈ Rn of probability distributions over the n pure strategies. Under certain
assumptions about the game and revision procedure, it is possible to analyze this Markov
chain directly.6 More typically, the Markov chain {XN

t } is not susceptible to direct analysis.
This difficulty can be circumvented by studying limiting versions of the Markov chain

{XN
t }. Here we are most interested in the large population limit. To understand the

behavior of the process {XN
t } over some fixed time horizon [0,T], we take the population

size N to infinity to obtain limiting processes that are easier to analyze than the original
Markov chain, and the analysis is then performed on the limiting processes so obtained.
Because the limiting processes run in continuous-time on the continuous state space X,
they can be studied using methods from calculus and analysis.

Focusing on these limiting processes is formally justified by suitable approximation
results.7 The most important of these is the finite-horizon deterministic approximation
theorem (Benaı̈m and Weibull (2003), Roth and Sandholm (2013)). The theorem shows that
over any fixed time horizon, as the population size N approaches infinity, the sample paths
of the Markov chains {XN

t } converge to solutions of a deterministic mean dynamic defined

4See Weibull (1995), Björnerstedt and Weibull (1996), and Sandholm (2010b, 2015).
5See, e.g., Nowak et al. (2004) and Fudenberg et al. (2006).
6For instance, Monderer and Shapley (1996) and Blume (1997) on better response and logit dynamics in

potential games, and Kandori and Rob (1995) on best response dynamics in supermodular games.
7We present these results in more detail in Appendices A.2 and A.3.
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by the expected motion of {XN
t } from each state. This result formally links the wide array

of deterministic evolutionary dynamics studied in the literature and the revision protocols
that generate them (Table 1). To understand the behavior of the Markov chains {XN

t } near
rest points x∗ of the mean dynamic (in other words, to describe “equilibrium” behavior in
the population), one can instead appeal to a diffusion approximation (Sandholm (2003)).
This result shows that a “local behavior process”, obtained by magnifying deviations of
{XN

t } from x∗ by a factor of
√

N, is approximated by the solution to a stochastic differential
equation whose linear drift coefficient and constant diffusion coefficient are determined
from the transition probabilities of {XN

t } near x∗.8

Of course, the population sizes relevant in applications are finite, and not always
very large. Thus as a practical matter, one should ask to what extent results that rely
on large population limits describe behavior in populations of moderate or small size.
These questions are generally quite difficult to answer analytically. Simulations provide
a simple way of evaluating the robustness of formal analyses whose tractability relies on
sending parameter values to extremes.9

Mathematical tractability shapes not only the forms that questions about evolutionary
models take, but also the specific assumptions that the models employ. As an example,
most models of evolution for normal form games make the analytically convenient as-
sumption that revising agents are able to evaluate strategies’ expected payoffs. But in
applications where agents from large populations engage in random matches, knowledge
of expected payoffs would need to come from a complete matching (so that expected
payoffs are just realized payoffs), from knowledge of the current population state (so that
expected payoffs could be calculated), or from a central source. While these possibilities
describe some applications, in others it seems likely that payoff information is more lim-
ited, with evaluations of strategies based on information obtained from samples, on direct
but limited experiences, or from observations of others’ experiences.10 In some cases, this

8Other limiting analyses are used to understand the behavior of {XN
t } over longer time spans. Stochastic

stability analyses consider behavior in the infinite horizon limit by means of the stationary distribution of
{XN

t }. Tractability is gained by considering the limit as the noise level in agents’ decisions vanishes (see
Foster and Young (1990); Kandori et al. (1993); Young (1993, 1998); Ellison (2000)), or as the population
size grows large (see Binmore et al. (1995); Binmore and Samuelson (1997)), or both; see Sandholm (2010b,
chapters 11 and 12) for an overview of this literature. Transitions between stable rest points in these limits
are analyzed using methods from large deviations theory; see the previous references and Sandholm and
Staudigl (2016) for the case of small noise limits, and Sandholm and Staudigl (2018) for the large population
limit. Finally, weak selection analyses introduce a scaling parameter to study biological interactions with very
small differences in fitness, so that the Markov process {XN

t } comes to resemble a perturbed random walk
(see Nowak et al. (2004); Wu et al. (2010); Sample and Allen (2017)).

9Work in this spirit includes Wu et al. (2013), which uses simulations to assess the robustness of the weak
selection limit.

10Early work emphasizing this point includes Robson and Vega-Redondo (1996), Schlag (1998, 1999),
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additional level of detail can push models beyond the limits of mathematical tractability.
One can then use simulations to assess whether assumptions imposed for simplicity are
robust to more realistic alternatives, and, in cases where they are not, to look for alternative
models and candidate theorems that seem likely to yield to formal analysis.11

1.2 Brief description of ABED and comparisons to other software

ABED12 is free and open-source software for running agent-based simulations in the
finite-population evolutionary game framework described at the start of Section 1.1. Its
simple graphical user interface (Figure 1) allows one to implement a wide range of the
revision protocols studied in the literature, including all of those appearing in Table 1, and
to fine-tune many other aspects of the evolutionary process. At present, ABED consists of
two separate computer programs: ABED-1pop, for single populations of agents matched
to play symmetric two-player games; and ABED-2pop, for pairs of populations of agents
matched to play (possibly asymmetric) two-player games.

ABED runs in NetLogo (Wilensky (1999)), a well-documented free and open-source
platform for designing agent-based simulations and conducting automatic explorations
of the parameter space. In the present context, the term “agent-based” means that each
agent in an ABED simulation is represented in the code as a distinct object. This approach
makes it relatively easy to modify ABED’s code to incorporate heterogeneity in agents’
behaviors, locations, and interaction patterns.13

There are other useful software packages available for analyzing and simulating evo-
lutionary game dynamics. Dynamo (Sandholm et al. (2012); Franchetti and Sandholm
(2013)) is a suite of easy-to-use Mathematica notebooks for generating phase diagrams,
vector fields, and other graphics related to mean dynamics from evolutionary game the-
ory. EvoDyn-3s (Izquierdo et al. (2018)) is similar to Dynamo in spirit, but it only deals
with one-population three-strategy games. On the positive side, it is very simple to use,
requiring only a mouse, and performs basic computations using exact arithmetic. BIRDS
(Dzonsons and Weibull (2013)) is a finite-population agent-based simulator that imple-
ments several revision protocols. PDToolbox (Barreto (2014)) is a set of functions coded
in Matlab for analyzing both mean dynamics and finite-population agent-based models

Sethi (2000), and Sandholm (2001a).
11Working in the reverse direction, Izquierdo et al. (2013) show different ways in which mathematical

analysis and computer simulation can be combined to better understand the dynamics of agent-based
models.

12Downloadable from https://luis-r-izquierdo.github.io/abed/.
13For more on implementing, extending, and analyzing agent-based evolutionary models using NetLogo,

see Izquierdo et al. (2019).
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Figure 1: Interface of ABED-1pop.
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derived from built-in revision protocols.14

To start with basic comparisons, ABED, unlike Dynamo and EvoDyn-3s but like BIRDS
and PDToolbox, simulates finite-population dynamics. Also, unlike Dynamo, EvoDyn-3s
and PDToolbox but like BIRDS, ABED can be run without proprietary software. Turning
to details, ABED is especially flexible in the specification of revision protocols, and incor-
porates revisions based on both complete and limited matching. Simulations in ABED
can be inspected and parameters modified during runtime, making it easy to explore
the effects of different modeling assumptions on population outcomes. Finally, ABED
is exceptionally user-friendly, with a simple graphical user interface, and with extensive
documentation and video tutorials available online.

1.3 Outline

The paper proceeds as follows. Section 2 provides a detailed description of ABED,
focusing for simplicity on ABED-1pop. Section 2.1 explains ABED’s parameters, including
a thorough account of those used to specify revision protocols. Section 2.2 (along with
the Appendix) connects the parameter choices in ABED to a wide range of evolutionary
dynamics studied in the literature, and suggests the broad scope for the simulation of un-
explored models. The next three sections deal with ABED’s output: Section 2.3 describes
ABED’s plots and monitors, Section 2.4 discusses the modification of parameters during
runtime, and Section 2.5 indicates how to conduct automatic Monte Carlo explorations of
ABED’s parameter space.

In Section 3 we present a variety of examples that show ABED’s capabilities and indi-
cate some roles for simulation in evolutionary game theory. These examples also illustrate
a number of basic features and applications of finite-population stochastic evolutionary
models: the nature of “equilibrium” play in finite populations of revising agents (§3.1,
§3.2); the sensitivity of the stability and location of equilibrium to modeling details (§3.2,
§3.3, §3.8); the accuracy of deterministic approximations of the evolutionary process (§3.3,
§3.4, §3.5); large deviations properties and waiting times until extinction (§3.2); and foun-
dations for set-valued stability concepts (§3.6). Some concluding remarks are offered in
Section 4.

The paper’s formal analyses appear in the Appendix, which includes a formal frame-
work for describing stochastic evolutionary processes in finite populations under random

14It is also worth mentioning the excellent websites EvoLudo (Hauert (2018)) and Evolution and Games
(Garcı́a and van Veelen (2012)), which include several interactive tutorials with accompanying software.
Also, Friedman and Sinervo (2015) provide software written in R and three Excel spreadsheets that imple-
ment several evolutionary game dynamics described in Friedman and Sinervo (2016).
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Figure 2: NetLogo interface elements used in ABED to input parameter values.

matching (including all those implemented in ABED), reviews the deterministic and dif-
fusion approximations, and presents a number of examples. An online appendix provides
detailed instructions to run computational experiments with ABED and collects the full
parameter settings used in the examples discussed in Section 3.

2. Description of ABED

ABED’s interface (Figure 1) contains buttons for running the simulation and for load-
ing/saving parameter files, monitors that show the passage of time, interface elements
organized into blocks for choosing simulation parameters, and plots that present simula-
tion results.

The top row of the interface contains five blue buttons. The setup button initializes the
model, the go button makes the model run indefinitely (until the same button is clicked
again), and the go once button runs the model for only one period (or “tick” in NetLogo
parlance). The two remaining buttons are used to load and save parameter files.

2.1 ABED’s parameters

In this section, we explain the parameters of ABED. In the course of doing so, we explain
how simulations in ABED are executed, and we describe the range of models that ABED
is able to enact. It is worth reiterating that nearly all parameter values can be modified
while ABED is running, with immediate effects on how the simulation proceeds.15

Input in ABED is entered using switches (for binary parameters), choosers (dropdown
menus for parameters with multiple named values), sliders (for numerical parameters),

15The payoff matrix and the initial conditions are the only two exceptions.
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Figure 3: Main parameters in ABED-1pop.

and an input box (to enter the payoff matrix). Each is illustrated in Figure 2. In what
follows we identify an interface item with the parameter it controls.

The main parameters that specify a simulation (Blocks 1–5) appear in the middle part
of ABED’s interface (Figure 3). Block 6 contains parameters that control the plotting of
output, and Block 7 includes a few secondary parameters.

2.1.1 The game, the population size, and the initial state

Block 1 contains the parameters used to specify the game, the population size, and the
initial state.

The symmetric normal form game is entered into the payoff-matrix input box in the
form of a square matrix. ABED deduces the number of strategies (henceforthn-of-strategies)
from the size of this square matrix. How agents are matched to play this game is defined
by parameters from later blocks.

The initial population state of the simulation is set as follows:

• If the switch random-initial-condition? is on, then the number of agents in the
population is specified using the slider n-of-agents, and each of these agents is
assigned one of the n-of-strategies strategies randomly.

• If random-initial-condition? is off, then the initial condition is read from the
initial-condition input box. The input here is a list of n-of-strategies nonneg-
ative integers whose i-th element specifies the number of agents using strategy i at
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the beginning of the simulation. In this case n-of-agents is set to the sum of the
elements of initial-condition.

As with the other parameters, the value of n-of-agents can be changed while the
simulation is running. If the slider is moved to the left, randomly chosen agents are
removed from the population; if it is moved to the right, randomly chosen agents are
cloned. Thus on average, the proportions of agents playing each strategy remain the
same, although the actual effect on these proportions is stochastic.

2.1.2 Assignment of revision opportunities to agents

The assignment of revision opportunities to agents during each period is controlled
by the options in Block 2.

• If the switch use-prob-revision? is on, then assignments are stochastic and in-
dependent, with the probability that an agent is assigned an opportunity being
specified using the slider prob-revision.

• If instead use-prob-revision? is off, then a fixed number of opportunities are allo-
cated among the n-of-agents agents at random. This number is specified using the
slider n-of-revisions-per-tick.

Since revising agents obtain information at the start of the simulation period, before
any revisions have occurred, ABED can simulate anything from simultaneous updating
(prob-revision = 1) to sequential updating (n-of-revisions-per-tick = 1).

2.1.3 Revision protocols

ABED allows the user considerable flexibility in specifying the agents’ revision proto-
cols. Here revision protocols are defined by three main elements: how candidate strategies
are selected, how agents evaluate candidate strategies, and how the latter information is
mapped to the probabilities of choosing each candidate strategy. These elements are
defined using the parameters from Blocks 3–5 of the interface, along with some minor
parameters in Block 7 whose default values (off ) are usually satisfactory.

Selection of candidate strategies

The parameters in Block 3 determine how agents select and evaluate candidate strate-
gies. The chooser candidate-selection specifies which of the two basic options is
applied.
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• Direct protocols. If the candidate-selection is set to direct, then the revising agent’s
additional candidate strategies—those besides his current strategy—are a random
subset of the other strategies, with a strategy’s current share having no bearing
on whether it is chosen as a candidate. In this case, the slider n-of-candidates
determines the total number of strategies the revising agent considers. The revising
agent’s current strategy is always part of the set of candidates. The agent evaluates
a strategy’s performance by explicitly testing it in matches with opponents, which
are described in the next section.16

• Imitative/reproductive protocols. If candidate-selection is set to imitative, then an
agent decides which strategies besides his current one to include as candidates by
choosing other agents from the population at random. Specifically, the revising
agent will compile a multiset of n-of-candidates agents to copy the strategy of one
of them. The revising agent is always part of this multiset of agents. The selection of
the other (n-of-candidates - 1) agents is conducted randomly, so popular strategies
in the population are more likely to be observed than less popular ones.17 All agents
in the set of candidates play the game against a sample of opponents (as described
below), and the revising agent observes the total payoffs obtained by each. In the
end, the revising agent has a list of n-of-candidates candidate strategies with
associated payoffs, where the same candidate strategy may appear several times on
the list.

Biological models like the frequency-dependent Moran process (Section 3.7) assume
that in each period, some randomly selected agents die and some of the remaining
agents reproduce, with agents earning higher payoffs being more likely to have off-
spring. Although their interpretations are quite different, imitative and reproductive
processes are formally very similar. When combined with what follows, the imita-
tive procedure above can be used to define reproductive processes, with the various
parameter choices determining the particular biological model to be simulated.18

16When this matching is complete, the payoff that an agent currently playing strategy i obtains from
testing strategy j equals the expected payoff the agent would obtain in a random match from switching
to j. But this payoff typically differs from the current payoff of an opponent now playing strategy j, who
faces one additional i player and one fewer j player than the original agent. The latter payoff would be
considered by the original agent if he were using an imitative protocol. The consequences of this distinction
are usually minor unless the population size is small. For further discussion, see Sandholm (2010b, Section
11.4).

17Two Block 7 parameters influence this selection. Setting consider-imitating-self? to on allows
an agent to choose himself as one or more of the additional (n-of-candidates - 1) candidates. Setting
imitatees-with-replacement? to on has a self-explanatory effect.

18Helbing (1992), Weibull (1995), and Schlag (1998) are early works that develop this basic connection
between reproductive and imitative models.
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Matching and payoffs

The matching process, which determines the total payoff an agent obtains when playing
or testing a strategy is governed by the three parameters in Block 4:

• If the switch complete-matching? is on, then an agent playing a strategy is matched
against all other agents.19

• If complete-matching? is off, then the agent plays his current strategy against a
random sample of opponents.20 The size of this sample is specified using the slider
n-of-trials.21 If in addition the protocol is direct, the switch single-sample? de-
termines how many samples of opponents the revising agent faces during testing:

– Ifsingle-sample? is on, the revising agent draws a single sample ofn-of-trials
opponents and tests each of his candidate strategies against this sample.

– If single-sample? is off, the agent tests each of his candidate strategies against
distinct, independent samples of n-of-trials opponents. Thus, different
strategies are tested against potentially different opponents.

Decision method

The procedures described in the previous two sections leave a revising agent with
an assignment of a payoff to each strategy in a multiset of n-of-candidates elements.
How the agent responds to this information—the probabilities with which he winds up
switching to each strategy—is specified in Block 5. The main parameter here is the
decision-method:

• If the decision-method is best, then the agent chooses a strategy whose payoff was
highest. The chooser tie-breaker includes various basic options for handling mul-
tiple maxima.22 The final option, random walk, has agents randomize among optimal
strategies with probabilities determined by an auxiliary random walk, allowing the
population to wander around a component of Nash equilibria (see Section 3.6 and
Appendix A.4).

19For either setting of complete-matching?, setting self-matching? (Block 7) to on allows an agent to be
matched against himself.

20Setting trials-with-replacement? (Block 7) to off has the anticipated effect on this random sample.
21Under an imitative protocol, during any period in which multiple agents revise, a single sequence of

trials is conducted for each agent who is either revising or a candidate for imitation, and this sequence
determines the average payoff recorded for the agent during the period. Payoffs an agent obtains when he
participates in another agent’s sequence are not counted toward his own average payoff.

22These are uniform (uniform randomization among the highest-payoff strategies), min (choose the optimal
strategy with the smallest index), and stick-uniform and stick-min (stick with the current strategy if it is an
optimal one; otherwise apply the second criterion).
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• If the decision-method is logit, then the choice probabilities are determined by
applying the logit choice rule to the collection of average payoffs. The logit noise
level is specified using the slider log-noise-level (see eq. (12) in Appendix A.1).23

• If the decision-method is positive-proportional, then the agent chooses a strategy
randomly with probabilities proportional to average payoffs.24 Thus, when using this
decision method, the payoffs specified in payoff-matrix should be non-negative.

In the remaining three decision methods, the revising agent considers exactly two strate-
gies, his current one and a single (random) alternative.25 In all cases, payoff differences are
converted into probabilities by dividing by the largest payoff difference that is possible in
the game.

• If the decision-method is pairwise-difference, the agent switches to the alternative
strategy only if that strategy yielded a higher average payoff than his current strategy,
and in this case he switches with probability proportional to the payoff difference.

• If the decision-method is linear-*, the agent switches to the alternative strategy with
probability proportional to the difference between the maximum possible payoff in
the game and the revising agent’s average payoff (under linear-dissatisfaction), or
between the alternative strategy’s average payoff and the minimum possible payoff

in the game (under linear-attraction).

Finally, the parameter prob-mutation specifies the probability with which a revising
agent opts out of the process described above, instead choosing a strategy uniformly at
random from the n-of-strategies available strategies.

2.2 Markov chains, mean dynamics, and diffusion approximations

A simulation run in ABED is a sample path of the Markov chain whose transition law
is induced by the game, the population size, the method of assigning revision opportu-
nities to agents, and the revision protocol. Focusing on the main qualitative options that
determine the revision protocol, Table 1 distinguishes 25 trios of choices for candidate
selection, matching, and decision method: 10 imitative and 15 direct. Of these 25 trios of

23When used with candidate-selection = imitative and n-of-candidates = 2, this decision method
leads to the so-called Fermi rule (see Roca et al. (2009b), Traulsen and Hauert (2009), Perc and Szolnoki
(2010), and Adami et al. (2016a)).

24This decision-method can be used to simulate frequency-dependent Moran and Wright-Fisher pro-
cesses; see Section 3.7.

25Thus, n-of-candidates is automatically set to 2.
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main options, there are 16 (to our knowledge) that have been explored in the literature,
either in infinite-population models in the form of mean dynamics, or in finite population
processes with explicitly stated revision protocols. Table 1 reports the names of these
mean dynamics and processes, and provides references to papers introducing either a
mean dynamic or a finite population process corresponding to the trio in question.26

The Appendix provides a formal framework for describing such finite-population
Markov processes of the sort simulated by ABED. This framework is based on a decom-
position of revision protocols into the three stages described above: selection of candidate
strategies, determination of payoffs through matching, and choice among the candidate
strategies. It also shows how mean dynamic and local diffusion approximations are con-
structed from the transition probabilities of the Markov chain, and derives the former
from the latter in a variety of examples. In addition to providing a structured and broadly
applicable framework for defining finite-population game dynamics, this presentation
demonstrates how the mean dynamics appearing in the interior of Table 1 are derived
from the ingredients of revision protocols that label the rows and columns.

2.3 ABED plots and monitors

The results of an ABED simulation run are presented in two pairs of plots. The upper
pair (Plots I-a and I-b in Figure 1) show the time path of the population state, and the
lower pair (Plots II-a and II-b in Figure 1) show the time path of each strategy’s expected
payoff. The first plot in each pair (labeled “recent history”) shows only recent data from
the simulation, while the second (labeled “complete history”) shows all data starting from
the beginning of the simulation. The data represented in any plot can be easily exported
to a csv file at any time, simply by right-clicking on the plot and selecting “Export” on
the contextual menu. The parameters that control plotting are contained in Block 6 of the
interface.

The passage of time in the simulation is tracked in the two monitors in the upper
right corner of the interface. The first, labeled ticks, tallies the number of periods
(“ticks” in NetLogo) that have elapsed in the current simulation run. The second, labeled
ticks-per-second, displays the number of periods that elapse per unit of clock time
(here taken to be seconds). This number is computed from the parameters concerning the
assignment of revision opportunities from Block 2 of the interface (see Section 2.1.2), with

26We should emphasize that the trios by themselves only partially describe the revision protocol. The
choices of number of opponents to observe, alternate strategies to test, trials playing a strategy, noise settings,
and other parameters are needed to complete the specification. The mean dynamics and processes named
in Table 1 sometimes restrict these other parameters as well, so even the trios that have been studied may
only have been analyzed in some instances.
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the presumption that each agent expects to receive one revision opportunity per unit of
clock time.27 The conversion of ticks to seconds determines the horizontal scaling of the
plots: in Plots I-a and II-a, time is measured in milliseconds, and in Plots I-b and II-b it is
measured in seconds.

2.4 Using ABED: Modifying assumptions during runtime

To illustrate one use of ABED, we show how the evolution of behavior under the
pairwise-difference decision method in the standard Rock-Paper-Scissors game is affected
by switching from imitative to direct candidate selection. We initialize the simulation with
the parameter settings in Table 2, and change candidate-selection from imitative to direct
in the middle of the run. In addition to the parameter choices already mentioned, Table 2
specifies that complete-matching? is on, so that agents’ experienced payoffs coincide
with their expected payoffs, as traditionally assumed in models of deterministic game
dynamics.28

Game, population size and initial state
Game Initial state Population size

payoff-matrix =
[ [ 0 −1 1 ]

[ 1 0 −1 ]
[ −1 1 0 ] ]

random-initial-condition? = off ( n-of-agents← 1000 )
initial-condition = [800 100 100]

Assignment of revision opportunities
use-prob-revision? = off n-of-revisions-per-tick = 1

Revision protocol
Candidate selection Matching Decision method

candidate-selection = imitative complete-matching? = on decision-method = pairwise-difference
( n-of-candidates← 2 ) ( n-of-trials← 999 ) prob-mutation = 0

Table 2: Parameter settings for Figure 4. The parameter candidate-selection is switched from imitative to
direct mid-run. Parameters stored in rock-paper-scissors.csv.

The mean dynamic for the initial parameter settings is the replicator dynamic (Ex-
ample A.1), which in standard Rock-Paper-Scissors exhibits a continuum of closed orbits
surrounding the unique Nash equilibrium at x∗ = (1

3 ,
1
3 ,

1
3 ). The later parameter settings

instead generate the Smith (1984) dynamic. Under this deterministic dynamic, the Nash

27Thus, if use-prob-revision? is on, then ticks-per-second = 1 / prob-revision, while if
use-prob-revision? is off, then ticks-per-second = n-of-agents / n-of-revisions-per-tick.

28In this table and those in Appendix II (online), we use gray text and symbol ← to denote parameter
assignments that are automatically set as a consequence of other parameter values.
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Figure 4: Time series of the population state in Rock-Paper-Scissors under the pairwise-difference decision
method. candidate-selection is changed from imitative to direct mid-run.

equilibrium is a global attractor, although the equilibrium is approached extremely slowly
once the state becomes close to x∗.29

Running ABED with the parameter values from Table 2 simulates the evolution of
the population shares when 1000 agents follow the two revision protocols described
above. Initially, 800 agents are assigned to Rock, 100 to Paper, and 100 to Scissors.30

While candidate selection is imitative, the population consistently follows cycles of large
amplitude among the three strategies. When candidate selection is switched to direct,
the cycles quickly become much smaller in magnitude, but persist indefinitely. These
behaviors are largely consistent with predictions from the mean dynamics.

2.5 Using ABED for Monte Carlo experiments

Besides running individual simulations using the interface, it is also possible to con-
duct several runs for different combinations of parameter values in a systematic fashion.
This automatic exploration of the parameter space can be easily conducted using Behav-
iorSpace (Wilensky and Shargel, 2002), a software tool integrated within NetLogo which
greatly facilitates running a model many times, systematically varying the desired pa-
rameter values, and keeping a record of the results of each run. Thus, together with
BehaviorSpace, one can use ABED not only for exploratory or illustrative purposes, but

29See Hofbauer et al. (1979), Zeeman (1980), and Hofbauer and Sandholm (2009). For phase diagrams of
the two mean dynamics, see Sandholm (2010b, Figure 5.3).

30As noted in Table 2, setting both random-initial-condition? = off and initial-condition = [800
100 100] causes ABED to automatically set n-of-agents to 1000.
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also to conduct statistical analyses of various revision protocols for any 2-player game in
finite populations. We explain how to perform Monte Carlo experiments in ABED using
BehaviorSpace in Appendix I (online).

3. Examples

We now present ABED simulations that illustrate a variety of properties of finite-
population game dynamics. The parameter specifications for each example can be found
in Appendix II (online), as well as in parameter files included with the ABED release.

3.1 “Equilibrium” behavior in finite-population dynamics

As explained above, deterministic evolutionary dynamics are often derived by first
defining finite-population stochastic models and then taking large population limits. A
rest point x∗ of the resulting mean dynamics is a state at which the expected motion of the
finite-population stochastic processes equals (or converges to) zero. If multiple strategies
are used at x∗, and if agents base their decisions on information obtained from limited
numbers of matches, then behavior at x∗ is not at rest in the finite-population processes.
Instead, there is variation in the use of each strategy, with agents switching among the
strategies in the support of x∗. If choice probabilities vary smoothly with the population
state, then in the large population limit, this order 1/

√
N variation of the state around x∗

can be approximated by a diffusion process (see Appendix A.3).
We now illustrate this random variation near “equilibrium points”, and assess how

well predictions based on the limiting diffusion approximation describe behavior in small
populations. We focus on a simple model in which agents are randomly matched once
in each discrete time period to play a Hawk-Dove game. One agent is randomly chosen
to revise her strategy, and she does so using imitate the best realization: the revising agent
compares the payoff he obtained in his match to the payoff a randomly selected individual
obtained in her match, adopting her strategy if and only if her realized payoff was larger
than his.31 Since agents are matched just once, the payoff comparison is very simple:
when a Hawk and a Dove each participate in a match, the Hawk will have the higher
payoff if and only if he encountered a Dove.

In Example A.6, we show that the expected motion of this process from interior popu-
lation states is always toward x∗ = (1

2 ,
1
2 ), the only interior rest point of the mean dynamic.

31The dynamics of this model are analyzed in detail by Izquierdo and Izquierdo (2013, case 5.1), who also
provide convergence results of this revision protocol to its mean dynamics in general n-player games.
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Figure 5: Time series of the population state in Hawk-Dove game under “imitate the best realization”.
(Simulation parameters: Table 1 in the online appendix; hawk-dove.csv.)

Population size SD from local Empirical SD
diffusion approximation in the simulation

20 1
2
√

20
≈ .1118 .1131

200 1
2
√

200
≈ .03536 .0367

2000 1
2
√

2000
≈ .01118 .0110

Table 3: Dispersion in behavior at an “equilibrium” state: simulations vs. diffusion approximations.

We then present the local diffusion approximation, which shows that in the large N limit,
fluctuations of the process about x∗ are approximately Gaussian with variance 1

4N .
In the simulation run shown in Figure 5, the finite population process described above

is initialized with a population size of 20. After 1000 units of clock time,32 the population
size is increased to 200; then after another 1000 units of clock time, to 2000. The figure
makes plain both the random variation in the proportions using each strategy, and the
fact that this variation diminishes when the population size is larger.

Table 3 compares the empirical standard deviations in the proportion of agents play-
ing Hawk with predictions based on the local diffusion approximation. Although the
approximation is only guaranteed for large population sizes, Table 3 shows that in the
present example, the predictions about the level of dispersion hold up quite well for small

32Recall that a unit of clock time is defined in such a way that each agent expects to receive one revision
opportunity per unit of clock time (Section 2.3). In the present example, sincen-of-revisions-per-tick= 1,
one unit of clock time corresponds to n-of-agents ticks.
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populations.33 The next example examines this approximation more closely.

3.2 Infinite- and finite-horizon behavior in good Rock-Paper-Scissors

To allow for less trivial mean dynamics, we now turn to games with more than two
strategies. We start by considering Rock-Paper-Scissors games

(1) A =


0 −` w
w 0 −`

−` w 0

 ,
where w > 0 represents the benefit of winning a match and ` > 0 the cost of losing.

Many finite-population models have finite-horizon behavior that differs dramatically
from their infinite-horizon behavior. There are formal results that describe behavior on
both time scales and that specify the order of magnitude of the wait until the transition
between them. As the statements of these results concern large population limits, they
do not directly address what behavior should be expected for particular population sizes
and other specific parameter values of interest.

As an illustration, we consider the evolution of play in a good Rock-Paper-Scissors game.
(equation (1) with 2 = w > ` = 1). We assume that matching is complete, and that agents
use an imitative protocol and the linear-dissatisfaction decision method.

Because the finite-population process is a finite-state Markov chain, it must ultimately
converge to one of its recurrent classes, which here are the three monomorphic states.
Nevertheless, the time needed to reach one of these absorbing states may be extremely
long for large populations, and behavior in the interim may be better approximated by
solutions to the protocol’s mean dynamic, which here is the replicator dynamic (Taylor and
Jonker (1978)) modulo a state-independent change of speed (see Example A.7). It is well
known that state x∗ = ( 1

3 ,
1
3 ,

1
3 ) is an interior evolutionarily stable strategy (ESS) of good RPS.

Thus classic results show that all interior solution trajectories of the replicator dynamic
converge to this state; the local diffusion approximation describes the fluctuations of the
process around this state. All this suggests that simulations with large finite populations
will initially approach the ESS and linger around it for some time, but will ultimately
converge to a monomorphic state.

33The diffusion approximation is stated in terms of a linear approximation of the mean dynamic around
the rest point, and a constant approximation of the dispersion and comovements of increments based on
values at the rest point of the mean dynamics. In the present example, these two approximations remain
accurate at population states outside of small neighborhoods of the rest point, and this helps to account for
the quality of the predictions in Table 3. See Example A.6 for details.
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To examine how the population size influences the actual course of play, we run
simulations of the process in ABED for a variety of population sizes. Figure 6 shows
representative runs over 500 units of clock time, so that each agent expects to receive 500
revision opportunities. The different panels show runs with populations of 50, 100, 250,
and 1000 agents. Under the smaller population sizes, an absorbing monomorphic state
is reached within the allotted interval, very quickly with 50 agents, and somewhat less
so with 100. This agrees with the infinite horizon prediction. For the larger population
sizes, all strategies remain in use throughout over the 500 time units, with the proportions
using each strategy varying randomly around the ESS. The sizes of the fluctuations are
large with 250 agents, and smaller but far from negligible with 1000; more on this below.

(i) 50 agents (ii) 100 agents

(iii) 250 agents (iv) 1000 agents

Figure 6: Imitative linear-dissatisfaction in good Rock-Paper-Scissors. (Simulation parameters: Table 2 in
the online appendix, good-rock-paper-scissors.csv.)

The time before the infinite horizon prediction is likely to hold force can be investigated
theoretically using tools from large deviations theory, which can be used to evaluate the
probabilities of seeing sample paths that move against the flow of the mean dynamic.
Results of Sandholm and Staudigl (2018) imply that for large population sizes N, the time
required for an excursion to the boundary to occur is of an exponential order in N, with
the rate of growth determined by the solution to a certain optimal control problem. To
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Figure 7: Time until absorption for imitative linear-dissatisfaction in good Rock-Paper-Scissors as a
function of the number of agents N. The dots in each column are subpopulation means of the log time

until absorption, and the dashed line is the semilog regression line.

roughly compare this prediction to simulated behavior in populations of moderate size,
we ran 1000 simulations of the evolutionary process for each population size from 50 to
200, starting each from a state as close as possible to x∗, and recorded the times at which
the boundary was reached. Figure 7 presents a semilog plot of the results, along with the
semilog regression line. Clearly, the regression line fits the subpopulation mean points
very well, and the subpopulation dispersions grow rather slowly as N increases. Thus the
prediction that the time to reach the boundary grows at an exponential rate appears to be
reasonably accurate even for small population sizes.

For population sizes large enough that absorption to the boundary does not occur
quickly, we can describe fluctuations of the population state around the ESS using a diffu-
sion approximation, as in Section 3.1. Example A.7 shows that for large enough population
sizes, the time t distributions of the evolutionary process settle down exponentially quickly
to a quasi-stationary distribution (cf. Darroch and Seneta (1965)) in which the standard
deviation in the proportions of agents using each strategy is

√
20/9N ≈ 1.491 1

√
N

. This
prediction of dispersion agrees reasonably well with the simulation runs with 250 agents
and 1000 agents from Figure 6.34

34For N = 250, the predicted standard deviation is
√

20/(9 · 250) = .0943, compared to empirical standard
deviations of .1029, .1031, and .1009 for the three strategies. For N = 1000, the prediction is

√
20/(9 · 1000) =

.0471, and the empirical standard deviations are .0509, .0506, and .0496.
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(i) time series

0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39 0.41 0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39 0.41 0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39 0.41

(ii) marginal empirical distributions (theoretical predictions in dashed black)

(iii) joint empirical distribution (triangular base centered at x∗ = ( 1
3 ,

1
3 ,

1
3 ), boundaries xi ≥

1
3 − .10)

Figure 8: Imitative linear-dissatisfaction in good Rock-Paper-Scissors, 5000 agents, 10000 units of clock
time.
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The diffusion approximation also provides a prediction of the full empirical distribu-
tion: namely, that it is approximately Gaussian with mean x∗ and covariance matrix 10

3N Φ,
where the matrix Φ ∈ R3×3, defined by Φii = 2

3 and Φi j = −1
3 for i , j, orthogonally projects

R3
0 onto the tangent space of the simplex.35 To evaluate this prediction, we simulate an

evolutionary process with 5000 agents over 10000 units of clock time (Figure 8). Since
N = 5000, we predict that the empirical distributions of the proportions of agents us-
ing each strategy should be approximately normal with mean 1

3 and standard deviation√
20/(9 · 5000) = .0211. Figure 8(ii) shows that this prediction is accurate. Thus with 5000

agents, fluctuations in the proportions using each strategy throughout the range 1
3± .05 are

common. Figure 8(iii) shows the empirical joint distribution of strategies on the portion
of the simplex with xi ≥

1
3 − .10 for all strategies i. Although there is not enough data to

describe the quasi-stationary distribution with great accuracy, it appears that the level sets
in Figure 8(iii) are roughly spherical, which is just how the Gaussian distribution from the
diffusion approximation should look: see Example A.7 for an explanation.

3.3 Imitation with complete matching and single matches

Generally speaking, the form that mean dynamics take depends on the nature of the
process through which agents are matched to play the game. One important exception
to this rule, noted in Table 1, arises in the case of the replicator dynamic, which appears
as a mean field in imitative models both when there is a complete matching of agents in
every period and when agents are matched just once each period (see Examples A.1 and
A.2, and Remark A.3). Thus in the large population limit, the finite-horizon evolution
of population shares under both matching regimes should be indistinguishable.36 For
moderate population sizes, however, differences in behavior could in principle be easier
to discern.

To investigate this question, we use ABED to simulate populations of 500 agents
playing standard Rock-Paper-Scissors (equation (1) with w = ` = 1) using an imitative
protocol with the pairwise-difference decision method. The panels of Figure 9 show the
results of two simulation runs. In panel (i), payoffs were generated by complete matching;
in panel (ii), payoffs were generated by matching each agent once.

In the complete-matching simulation run shown in panel (i), the population cycles
around the mixed equilibrium x∗ at varying distances for 1000 time units. Repeating this

35This is the source of the predicted standard deviation above:
√

20
9N =

√
10
3N ·

2
3 .

36However, processes with the same mean dynamics may be distinguishable by looking at magnified
deviations from rest points (Appendix A.3), or at infinite-horizon behavior (Sandholm (2010b, Section
12.4.3)).
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(i) complete matching (ii) single matches

Figure 9: Standard Rock-Paper-Scissors under imitative pairwise-difference protocol, starting at
initial-condition = [166 167 167]. (Other simulation parameters as in Table 2.)

simulation 100 times, we observed cycling among interior states 84 times. In the single-
matching run shown in panel (ii), the population reaches a monomorphic state within
1000 time units; in 100 simulation runs, this behavior was observed 85 times. Because the
single-matching specification includes randomness in payoff realizations, it results in a
stochastic process whose increments exhibit greater dispersion around their expectations.
This additional variation is the likely source of the qualitative difference in medium-run
behaviors.

3.4 Best response dynamics in bad Rock-Paper-Scissors

Bad Rock-Paper-Scissors (equation (1) with ` > w) is the simplest example in which a
variety of standard deterministic population dynamics exhibit an attracting closed orbit
in the interior of the simplex. Under the best response dynamic (Gilboa and Matsui
(1991), Hofbauer (1995b)), play converges to a collection of population states called a
Shapley triangle. When w = 1, the triangle’s vertices are the cyclically symmetric states

1
` 2+`+1 (` 2, `, 1), 1

` 2+`+1 (`, 1, ` 2), and 1
` 2+`+1 (1, ` 2, `). Motion toward and within this cycle is

determined by the exponential decay in the use of suboptimal strategies: if strategy i is
suboptimal over time interval [s, t], then the proportion xi playing strategy i in the limiting
process satisfies xi(t) = et−s xi(s).37

How much of this structure is preserved with finite population sizes? Figure 10
shows that with a population size is 100, cycling is somewhat irregular, both in the rate
of decay in the use of suboptimal strategies and in the fractions using each strategy
when the optimal strategy changes. But with a population size of 1000, the deterministic

37Gaunersdorfer and Hofbauer (1995) provide a comprehensive analysis of this example. For phase
diagrams of a variety of dynamics in bad Rock-Paper-Scissors, see Sandholm (2015, Ex. 13.26).
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(i) 100 agents (ii) 1000 agents

Figure 10: The best response protocol in bad Rock-Paper-Scissors with w = 1 and ` = 2. (Simulation
parameters: Table 3 in the online appendix; bad-rock-paper-scissors.csv.)

approximation appears very accurate: the prevalence of each strategy at the moment it
becomes suboptimal is nearly the same at the start of each cycle, and the abandonment of
the strategy while it is suboptimal is an almost deterministic exponential decay.

3.5 Mutations and the hypercycle system

The hypercycle system is a differential equation model introduced by Eigen and Schuster
(1979) to model cyclical catalysis in mixtures of polynucleotides. It also arises as the
replicator dynamic for the hypercycle game, which has a simple cyclical payoff structure—
specifically, one in which each strategy yields a payoff of 1 against the preceding strategy
(modulo n (= n-of-strategies)) and a payoff of 0 against the others (Schuster and
Sigmund (1983)). When n ≥ 5, the unique Nash equilibrium x∗ = ( 1

n , . . . ,
1
n ) and the

boundary of the simplex are both repelling (Schuster et al. (1978), Hofbauer et al. (1981)),
and the dynamics admit a stable periodic orbit (Hofbauer et al. (1991)). Along this orbit,
each strategy becomes very scarce at its low ebb, so much so that it might vanish entirely
if the population were of moderate size.

With this question in mind, we use ABED to simulate a finite-population imitative
process whose mean dynamic is the hypercycle system with n = 5, but with the addition
of rare mutations to prevent strategies from going extinct. Figure 11(i) shows a typical
simulation run for a population of size 1000 and a mutation probability of 10−3. After
random variation moves the population away from the Nash equilibrium, play follows
a path consistent with the hypercycle system, with the use of each strategy varying
from about 800 agents to no agents at all. Mutations prevent the latter situation from
persisting, and indeed the cycling in Figure 11(i) looks almost completely regular. If
the mutation probability is reduced to 10−4, then extinctions persist for long enough that
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(i) 1000 agents, prob-mutation = 10−3 (ii) 1000 agents, prob-mutation = 10−4

Figure 11: The five-strategy hypercycle game under imitation/pairwise-difference with mutations.
(Simulation parameters: Table 4 in the online appendix; hypercycle-5.csv.)

regular cycling is destroyed. The population still passes through regimes in which each of
the five strategies predominates, but the stochastic process no longer resembles the classic
hypercycle system.

3.6 Random-walk tie breaking and setwise stability

In evolutionary game models in which agents optimize exactly, one must specify what
they do when choosing among multiple optimal strategies. Most stochastic models posit
that the evolutionary process is Markov with respect to the population state. When the
population is large, large-numbers arguments then imply that the proportions of revising
agents choosing each of the optimal strategies are fixed, leading to motion in a nearly
deterministic direction. In other words, combining the usual Markov assumption with
large population sizes creates strong implicit restrictions on adjustments in regions with
multiple best responses.

An important possibility that these restrictions rule out is wandering of the popula-
tion state around and possibly out of a component of Nash equilibria, a phenomenon
with deep connections to set-valued versions of the ESS concept. Building on work of
Thomas (1985) and Balkenborg and Schlag (2001), van Veelen (2012) characterizes sets that
are evolutionarily stable as those that are robust against indirect invasions (RAII). Roughly
speaking, this definition requires a set of states to be mutually accessible through se-
quences of neutral mutations, but not to be susceptible to mutations that lead out of the
set and then outperform the incumbents in the post-entry state.

To allow for wandering within a Nash equilibrium component, ABED includes the op-
tion of random-walk tie breaking when decision-method= best. As explained in Appendix
A.4, this option initiates an auxiliary random walk that runs on a discrete set of interior
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Figure 12: Wandering out of a Nash component in van Veelen’s game (2) under imitation/best with
random-walk tie-breaking, 100 agents, and mutation probability 10−3. (Simulation parameters: Table 5 in

the online appendix; random-walk-tie-breaking.csv.)

population states and whose stationary distribution is uniform on this set. The value of
the auxiliary variable determines the relative probabilities with which currently optimal
strategies are chosen.

As an illustration, we consider the following game of van Veelen (2012, Example 4):

(2) A =


1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 2

 .
In this game, any state at which only strategies 1 and 2 are used is neutrally stable
(Maynard Smith (1982)). If the population reaches the state at which only population 2
is used, then strategy 3 can invade as a neutral mutant. Under imitative protocols, the
population may then wander among states at which only strategies 2 and 3 are used,
and may reach the state at which only strategy 3 is used. There strategy 4 is also a best
response, and a mutation introducing it can quickly lead strategy 4 to predominate.

Figure 12 presents a typical simulation run of a process in which agents are recurrently
completely matched to play game (2). When revising, an agent observes his own payoff

and that of a randomly chosen opponent, adopting the strategy whose payoff is higher,
and resolving ties using the random-walk tie-breaker. Because the protocol is imitative,
strategies that go extinct can only be reintroduced via mutations, allowing the stepping-
stone path described in the previous paragraph to be traversed. Figure 12 shows that
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(i) random-walk (ii) stick

(iii) uniform (iv) min

Figure 13: Alternate tie-breaking rules in van Veelen’s game (2) under imitation/best.

starting from the state at which all agents play strategy 1, the state at which all agents
play strategy 4 is reached at the time that each agent has had approximately 2000 revision
opportunities. Figure 13 shows simulation runs of other processes that differ only in the
choice of tie-breaking rule. While the sequence of events that allows the initial equilib-
rium component to be escaped is always possible, without persistence in tie-breaking
probabilities it is unlikely to occur within a reasonable amount of time.

3.7 The frequency-dependent Moran process

The frequency-dependent Moran process (Nowak et al. (2004); Taylor et al. (2004))
is a finite-population stochastic process named for Moran (1958, 1962) and commonly
studied in the biology literature.38 During each time step of this process, one individual is
randomly selected to be cloned, with probability proportional to payoffs from a complete
matching. The newborn replaces another randomly selected individual, thus keeping the
population size constant.39 Moran processes are often studied under weak selection, with

38See Nowak (2006) and Traulsen and Hauert (2009) for overviews and references.
39Closely related is the frequency-dependent Wright-Fisher process (Imhof and Nowak (2006)), which

uses the same updating rule, but with synchronized reproduction (i.e., non-overlapping generations). As
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the payoffs of an i player facing a j player set to 1 − w + wAi j for some small intensity of
selection w > 0. Analyses of these processes commonly focus on very long run behavior,
often in the limit as the population size becomes large or the mutation rate becomes
small.40

ABED can be used to examine the behavior of the Moran process away from these
limits. We describe the appropriate parameter settings in Example A.4 of Appendix A.2,
and show there that the form of the mean dynamic of the Moran process depends on
whether standard or weak selection is assumed. In the former case, one obtains the
Maynard Smith replicator dynamics (Maynard Smith (1982)), while the latter yields the
imitative logit dynamics (Weibull (1995)) with a large noise level on a slightly modified
payoff matrix.

3.8 Sample best response vs. best experienced payoff in Centipede

To illustrate how stochastic evolutionary dynamics in two-player asymmetric games
can be simulated with ABED-2pop, we consider the Centipede game of Rosenthal (1981).
This extensive form game has ten decision nodes. Player 1 decides at odd nodes while
player 2 decides at even nodes. Players’ choices at each node are to Stop or to Continue.
The payoffs obtained by each player at every possible outcome are shown in Figure 14.
For each player, strategy i is the plan to Continue for i − 1 decision nodes and stop at his
ith decision node. Strategy 6 for both players is the plan to always Continue.
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Figure 14: The Centipede game (Rosenthal (1981)).

Here we explore the behavior of populations matched to play this game under two
direct protocols based on selecting best-performing strategies, where performances are
computed using samples of size 1 (i.e. n-of-trials = 1). Under a sample best response
protocol (Sandholm (2001a), Kosfeld et al. (2002), Oyama et al. (2015)), a revising agent
observes the strategy of a single opponent and plays a best response. Under a best
experienced payoff protocol (Osborne and Rubinstein (1998), Sethi (2000), Sandholm et al.

noted in Section 2.1.2, this process can be simulated in ABED by setting prob-revision = 1.
40See Fudenberg et al. (2006), Imhof et al. (2005), Imhof and Nowak (2006), and Fudenberg and Imhof

(2006, 2008).
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Figure 15: Best response to samples in Centipede, with single-sample? switched from on to off mid-run.
(Simulation parameters: Table 6 in the online appendix; centipede-10-nodes-sampleBR-min.csv.)

(2019, 2018)), a revising agent plays each of his strategies once against a single randomly-
drawn opponent and proceeds by playing the strategy that performed best. In both cases,
ties are broken in favor of the least cooperative strategy.

Figure 15 shows the time series of the strategy shares in a representative run of
ABED-2pop, with agents initially using a sample best response protocol, and then, starting
halfway through the run, a best experienced payoff protocol. The parameter settings are
presented in Table 1. Switching between the two protocols is accomplished by changing
one parameter: single-sample?, from on to off. Figure 15 shows that this change has a
dramatic effect on the level of cooperation in Centipede. When agents play a best response
to a simple estimate of aggregate behavior in the opposing population, play rarely moves
beyond the initial decision node. If instead agents choose the strategy that performed best
during testing against randomly chosen opponents, play is instead concentrated on the
last few nodes of the game.

This simulation was among the first carried out by the authors using ABED, and we did
not anticipate its outcome. Taking these simulation results as our starting point, we were
later able to establish the main properties observed in the simulation analytically, and to
show that these properties are robust to many variations in how agents make decisions
(Sandholm et al. (2019)). We hope that other researchers will also put ABED to work both
as an exploratory tool and as a platform for robustness testing.
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4. Concluding remarks

Evolutionary game theory provides a powerful set of analytical tools for studying
behavior in populations of myopic, strategically interacting agents, tools which have been
deployed in wide-ranging applications.41 As with any formal theory, progress in evolu-
tionary game theory has relied on assumptions and approximations that make its models
tractable. The examples presented above illustrate how ABED can be used to see how
theoretical predictions stand up in settings where these assumptions are relaxed—for
instance, when populations are not especially large, when matching of agents is incom-
plete, and when agents’ information about strategies’ performances comes from their
own and others’ direct experiences. By encompassing a great variety of specifications of
revision processes within a single framework, ABED not only facilitates comparisons be-
tween different models from the literature, but also provides powerful tools for exploring
formulations of agents’ choice processes.

Because ABED is thoroughly documented and runs in the user-friendly NetLogo plat-
form, it is not overly difficult to add new parameters, new protocols, or more elaborate
alterations (including agent heterogeneity) by directly modifying the ABED code. Future
work will substantially expand ABED’s capabilities, and we gladly accept implementation
requests directed towards this end.

Appendix. A framework for finite-population evolutionary
game dynamics

In this appendix, we present a framework for specifying finite-population evolutionary
game dynamics and use it to formally describe the Markov chains simulated in ABED.
The main novelty is a general definition of revision protocols that decomposes them into
three stages: candidate selection, matching and determination of payoffs, and choices
of new strategies (Section A.1). The description of Markov chains covers a range of
parameter choices wide enough to allow all of the combinations presented in Table 1, but
for simplicity certain parameter choices are assumed fixed. We also review results on
deterministic (Section A.2) and diffusion (Section A.3) approximations for these Markov
chains and exhibit examples of each. Finally, Section A.4 presents the random-walk
tie-breaker mentioned in Section 2.1.3 and applied in Section 3.6.

41For a thorough survey of recent applications, see Newton (2018).
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A.1 The Markov chain

When the agents in the population play a game with strategy set S = {1, . . . ,n}, strategy
distributions are elements of the simplex X = {x ∈ Rn

+ :
∑n

i=1 xi = 1}, whose ith vertex is
denoted ei. If the population is of size N (= n-of-agents), the population state is an
element of the grid X N = {x ∈ X : Nxi ∈ Z for all i}.

We define the Markov chain as a discrete-time process on the set of population states
X N.42 We assume during each period of duration 1

N , exactly one agent receives a revision
opportunity (i.e., use-prob-revision? = off and n-of-revisions-per-tick = 1). The
transition law of the Markov chain {XN

t } is then described by

(3) P
(
XN

k+1/N = x + 1
N (e j − ei)

∣∣∣ XN
k = x

)
= xiρ

A
ij(x).

For an i player to switch to strategy j during the next period, the player who receives the
next revision opportunity must be an i player, which happens with probability xi, and he
must switch to strategy j, which happens with probability ρA

ij(x). The revision protocol ρ
captures both the information that agents have when revising due to matching, and the
decision rule they employ. Choice probabilities under the revision protocol depend on the
game A ∈ Rn×n ( = payoff-matrix) being played and the population state x. In general,
choice probabilities in ABED can depend directly on the population size N, but in what
follows we will focus on parameter values that preclude such dependence.

We first provide a general formulation (4) of revision protocols, and then explain each
component of (4) in detail.

Let c ( = n-of-candidates) denote the number of observations about strategies’ per-
formances that a revising agent obtains.43 The total information a revising agent obtains
is described by a record (s, π), a c × 2 matrix whose first column s is the strategy record and
whose second column π is the payoff record. The hth row of the record is a pair (sh, πh)
that describes the strategy played and the payoff obtained in the revising agent’s hth
observation.

Revision protocols implemented in ABED can be expressed in the form

(4) ρA
ij(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π).

The summand in (4) expresses the probability that a revising strategy i player obtains

42This description does not correspond to the agent-based specification of the process within ABED’s
code.

43Here a “performance” is an average payoff generated by the matching procedure in place.
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record (s, π) and switches to strategy j. Summing this over all payoff records yields the
probability that a revising strategy i player switches to j.

The summand in (4) is the product of three terms. The first, pi(s | x), describes candidate
selection. It is the probability that a revising agent playing strategy i obtains strategy record
s. This probability will depend on the population state x when the protocol is imitative,
but not when it is direct.

The second term, q(π | s, x,A) describes matching and sampling. It is the probability
that a revising agent with strategy record s obtains corresponding payoff record π. This
probability depends on the population state x and on the payoff matrix A.

The third term, σi j(s, π), describes the decision method. It is the probability that a
revising strategy i player with record (s, π) chooses strategy j. This probability only
depends on x and A by way of the record (s, π).44

Candidate selection and strategy records

In constructing a strategy record s = {sh}
c
h=1 for a revising agent playing strategy i, we

let s1 = i be the revising agent’s strategy, and view subsequent strategies as being added
sequentially.45

Under a direct protocol, strategies s2, . . . , sc are drawn without replacement from S r {i}.
Thus the probability of any strategy record with s1 = i and all strategies distinct is the
same, and equal to the inverse of the number of such records:

(5) pi(s | x) =
(n − c)!
(n − 1)!

.

Thus when c = 2, the n − 1 feasible strategy records are of the form (i, j) with j , i, and
each has probability 1

n−1 . When c = n, the (n− 1)! feasible strategy records start with i and
contain all n strategies, and each has probability 1

(n−1)!

How an imitative protocol and the population state x determine the probabilities of strat-
egy lists depends on the values of the auxiliary parametersimitatees-with-replacement?and
consider-imitating-self?. If both are on, then the probability of a strategy record s with
s1 = i is

44A minor exception is noted below.
45The ordering of the pairs (sh, πh) is irrelevant in subsequent parts of the protocol. One could alternatively

express revision protocols directly in terms of classes of records that are equivalent up to permutation.
Then instead of there being distinct summands for equivalent records (see Examples A.4 and A.5), larger
combinatorial terms would appear in the function p. On balance the approach we follow here is notationally
simpler.
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(6) pi(s | x) =

c∏
h=2

xsh .

If both parameters are off and c = N, then every strategy record s ∈ SN with s1 = i and
with Nx j entries equal to j for all j ∈ S has equal probability:

(7) pi(s | x) =
(Nxi − 1)!

∏
k,i(Nxk)!

(N − 1)!
.

Matching and sampling parameters and payoff records

Given a strategy record s = {sh}
c
h=1, a population state x, and the payoff matrix A,

the matching and sampling parameters determine the probabilities of each payoff record
π = {πh}

c
h=1. To rule out finite-population effects we assume here that self-matching? is

on.
If matching is complete, then each agent gets the expected payoff of the strategy he

plays:

(8) q
(
((Ax)s1 , . . . (Ax)sc) | s, x,A

)
= 1.

For cases where matching is not complete, we assume here for simplicity thatn-of-trials
= 1. If the protocol is imitative, or if it is direct and single-sample? is off, then the payoff

associated with each strategy in the record is determined by a distinct random match. If
we assume for convenience that elements within each row of A are distinct,46 then

(9) q
(
(As1t1 , . . .Asctc) | s, x,A

)
=

c∏
h=1

xth .

If instead the protocol is direct and single-sample? is on, then all strategies are evaluated
by taking expectations with respect to the empirical distribution of the single sample. The
case with n-of-trials = 1 is very simple:47 if A has distinct rows, then

(10) q
(
(As1k, . . .Asck) | s, x,A

)
= xk.

46If rows may have repeated elements, we must account for the fact that the payoff value obtained by an
agent playing strategy j does not uniquely determine the strategy of his match partner. See Example A.2.

47For an example with larger numbers of trials, see Oyama et al. (2015).
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Decision methods

Each decision method defines a collection of functionsσi j, where σi j(s, π) is the probabil-
ity that a revising i player with record (s, π) chooses strategy j. Underdecision-method= best,

(11) if
[
πh = max

h′
πh′ ⇒ sh = j

]
, then σi j(s, π) = 1.

If the antecedent condition fails (i.e., if the maximum payoff is achieved by more than
one strategy in the record), then choice probabilities are determined by the value of
tie-breaker, and may condition on the revising agent’s strategy i.

Under decision-method = logit,

(12) σi j(s, π) =

∑
h : sh= j exp(η−1πh)∑

k∈S
∑

h : sh=k exp(η−1πh)
,

where the noise level η is set using ABED parameter log-noise-level= log10 η. Similarly,
decision-method = positive-proportional is defined for positive payoff records π by

(13) σi j(s, π) =

∑
h : sh= j πh∑

k∈S
∑

h : sh=k πh
.

Under the remaining decision methods, c = 2, s1 = i is the revising agent’s strategy,
and if s2 = i, then σii(s, π) = 1. Let Amax and Amin be the largest and smallest payoff entries
in A, and let ∆̄A = Amax

− Amin. If decision-method = linear-dissatisfaction, then

(14) σi j((i, π1), ( j, π2)) =
Amax

− π1

∆̄A
and σii((i, π1), ( j, π2)) = 1 −

Amax
− π1

∆̄A
.

If decision-method = linear-attraction, then

(15) σi j((i, π1), ( j, π2)) =
π2 − Amin

∆̄A
and σii((i, π1), ( j, π2)) = 1 −

π2 − Amin

∆̄A
.

And if decision-method = pairwise-difference, then

(16) σi j((i, π1), ( j, π2)) =
[π2 − π1]+

∆̄A
and σii((i, π1), ( j, π2)) = 1 −

[π2 − π1]+

∆̄A
.

A.2 Finite-horizon deterministic approximation: the mean dynamic

The mean dynamic of the Markov chain described by (3) is
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(17) ẋi = Vρ,A
i (x) =

∑
j∈S

x jρ
A
ji(x) − xi.

Results of Benaı̈m and Weibull (2003) (for Lipschitz continuous dynamics) and Roth and
Sandholm (2013) (for differential inclusions) imply that over finite time spans, sample
paths are very likely to be closely approximated by solutions to (17) if the population size
N is large enough. Next, we present four revision protocols and their mean dynamics.

Example A.1. The replicator dynamic from complete matching. Suppose candidate selection is
imitative as in (6) with c = 2, matching is complete (8), and the decision method is pairwise-
difference (16). To derive the mean dynamics for protocols using pairwise-difference, it is
convenient to express the formula (17) for the mean dynamic without the diagonal terms
ρii of the revision protocol:

(18) ẋi = Vρ,A
i (x) =

∑
j,i

(
x jρ

A
ji(x) − xiρ

A
ij(x)

)
.

The off-diagonal terms of the revision protocol are

ρA
ij(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π)

= x j × 1 × σi j((i, (Ax)i), ( j, (Ax) j))

= x j
[(Ax) j − (Ax)i]+

∆̄A
,

where the second equality uses the fact that the only strategy record that allows a revising
i player to switch to j is (s1, s2) = (i, j). Using (18), we compute the mean dynamic as

ẋi =
∑
j,i

(
x jρ

A
ji(x) − xiρ

A
ij(x)

)
=

∑
j,i

(
x j

(
xi

[(Ax)i − (Ax) j]+

∆̄A

)
− xi

(
x j

[(Ax) j − (Ax)i]+

∆̄A

))
=

1
∆̄A

xi

∑
j,i

x j((Ax)i − (Ax) j)

=
1

∆̄A
xi

∑
j∈S

x j((Ax)i − (Ax) j)

=
1

∆̄A
xi((Ax)i − x′Ax).

This is the replicator dynamic, sped up by a constant factor of 1
∆̄A . _
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Example A.2. The replicator dynamic from single matches. Repeat the setup from Example A.1,
but with complete matching replaced by limited matching with n-of-trials = 1, as in
(9). Then for j , i,

ρA
ij(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π)

=
∑
k∈S

∑
`∈S

x j × xkx` × σi j((i,Aik), ( j,A j`))

= x j

∑
k∈S

∑
`∈S

xkx`
[A j` − Aik]+

∆̄A
,

where the sums are over the strategies of the match partners of the revising i player and
the j player that he observes. The mean dynamic is

ẋi =
∑
j,i

(
x jρ

A
ji(x) − xiρ

A
ij(x)

)
=

∑
j,i

x j

xi

∑
k∈S

∑
`∈S

xkx`
[Aik − A j`]+

∆̄A

 − xi

x j

∑
k∈S

∑
`∈S

xkx`
[A j` − Aik]+

∆̄A




=
1

∆̄A
xi

∑
j,i

x j

∑
k∈S

∑
`∈S

xkx`(Aik − A j`)

=
1

∆̄A
xi

∑
j,i

x j((Ax)i − (Ax) j)

=
1

∆̄A
xi((Ax)i − x′Ax).

Thus the mean dynamic is again the replicator dynamic, as in the previous example. _

Remark A.3. Calculations similar to those from Examples A.1 and A.2 show that imi-
tation using the decision methods linear-dissatisfaction and linear-attraction also generate
the replicator dynamic under both complete matching and single matches, up to a state-
independent change of speed; compare Example A.7.

Example A.4. The Maynard Smith replicator dynamic, the imitative logit dynamic, and fre-
quency-dependent Moran processes. Suppose candidate selection is imitative with c = N and
without replacement, as in (7), that matching is complete (8), and that the decision method
is positive-proportional (13) (with the entries of A assumed to be positive). Let SN(x, i) de-
note the set of strategy records s ∈ SN with s1 = i and #{h : sh = k} = Nxk for all k ∈ S.
Since matching is complete, one of these records must occur, and the probability pi(s | x)
of each such record is the same (and given by (7)), implying that pi(s | x) = 1/#SN(x, i) for
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all s ∈ SN(x, i). We can thus compute the revision protocol as

ρA
ij(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π)

=
∑

s∈SN(x,i)

pi(s | x) × 1 ×

∑
h : sh= j (Ax) j∑

k∈S
∑

h : sh=k (Ax)k

=
x j(Ax) j∑

k∈S xk(Ax)k
.(19)

Using (17), we compute the mean dynamic:

ẋi =
∑
j∈S

x jρ
A
ji(x) − xi =

xi(Ax)i∑
k∈S xk(Ax)k

− xi =
xi((Ax)i − x′Ax)

x′Ax
.(20)

(20) is the Maynard Smith replicator dynamic.
If the only change we make to the above is to use the logit decision method with noise

level η ∈ (0,∞), then the revision protocol and the mean dynamic become

ρA
ij(x) =

∑
h : sh= j exp(η−1(Ax) j)∑

k∈S
∑

h : sh=k exp(η−1(Ax)k)
=

x j exp(η−1(Ax) j)∑
k∈S xk exp(η−1(Ax)k)

and(21)

ẋi =
xi exp(η−1(Ax)i)∑

k∈S xk exp(η−1(Ax)k)
− xi.(22)

(22) is the imitative logit dynamic (Weibull (1995)).
In the biology literature, the stochastic evolutionary process induced by revision pro-

tocol (19) is called the frequency-dependent Moran process (Nowak (2006)). This process
is typically studied in the weak selection limit, meaning that the payoff matrix with entries
Ai j is replaced with one with entries 1−w + wAi j, where the intensity of selection w > 0 is
taken to 0. To study the weak selection limit in the frequency-dependent Moran process
(19), one can also use the logit decision method (21) with a large choice of noise level η and
modified payoffs Ai j − 1. A large value of η means that η−1 is close to zero, so it follows
from the Taylor approximation exp(y) ≈ 1+ y for y ≈ 0 that doing this leads to an excellent
approximation of the frequency-dependent Moran process with w = η−1. _

Example A.5. Best experienced payoff dynamics. Suppose candidate selection is direct with
c = n as in (5), that matching is based on limited multiple samples with n-of-trials = 1,
as in (9), and that the decision method is best, as in (11). To derive the revision protocol,
we introduce the following notations: Let Sn(i) denote the set of strategy records s ∈ Sn

that are a permutation of the elements of S = {1, . . . ,n}with s1 = i. For s, t ∈ Sn and payoff
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matrix A, define the payoff record π̌(s, t,A) ∈ Rn by π̌h(s, t,A) = Ashth . Define s◦ ∈ Sn by
s◦h = h for all h. And let Sn

∗( j,A) = {t ∈ Sn : A jt j > Aktk for all k ∈ S}.
If all entries of A are distinct we can derive the revision protocol as follows:

ρA
ij(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π)

=
∑

s∈Sn(i)

∑
t∈Sn

1
(n − 1)!

×

n∏
h=1

xth × σi j(s, π̌(s, t,A))

=
∑
t∈Sn

n∏
h=1

xthσi j(s◦, π̌(s◦, t,A))

=
∑

t∈Sn
∗( j,A)

n∏
h=1

xth .

The third equality uses the invariance of σi j to the arrangement of the pairs in (s, π) and the
fact that the sum is taken over all t in Sn. The mean dynamic that this protocol generates,

ẋi =
∑

t∈Sn
∗(i,A)

n∏
h=1

xth − xi,

is an instance of a best experienced payoff dynamic. _

A.3 Diffusion approximation near equilibria

Suppose that x∗ is a rest point of the mean dynamic (17): Vρ,A(x∗) = 0. We define the
local behavior process near x∗, denoted {ZN

t }t≥0, by

(23) ZN
t =
√

N(X̄N
t − x∗)

where {X̄N
t }t≥0, defined by X̄N

t = XN
bNtc/N is the piecewise constant interpolation of {XN

t }t∈{0,1/N,...},

and where XN
0 ∈ X N converges to x∗ at rate o(1/

√
N). Let DVρ,A

i (x∗) denote the Jacobian of
Vρ,A evaluated at x∗, and define the local covariance matrix Σ∗ ∈ Rn×n by

(24) Σ∗i j =


−

(
x∗i ρ

A
ij(x
∗) + x∗j ρ

A
ji(x
∗)
)

if i , j,∑
k,i

(
x∗i ρ

A
ik(x
∗) + x∗kρ

A
ki(x
∗)
)

if i = j.

Now consider the stochastic differential equation
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(25) dZt = DVρ,A(x∗)Zt dt +
√

Σ∗ dBt,

where
√

Σ∗ is the symmetric positive semidefinite square root of Σ∗, and Bt denotes an
n-dimensional Brownian motion. Applying results of Stroock and Varadhan (1979), Sand-
holm (2003) shows that over finite time spans, the local behavior process (23) converges
in distribution (with respect to the Skorokhod topology) to the solution to (25) with initial
condition 0 as the population size N grows large.48

When the process defined by (25) has a limiting stationary distribution, this distribution
describes the persistent order 1

√
N

fluctuations of the original evolutionary process around
the rest point x∗. Such a distribution will exist whenever the rest point x∗ is linearly stable
under the mean dynamic—that is, whenever the eigenvalues of DVρ,A(x∗) corresponding
to eigenvectors tangent to the simplex have negative real part.49 To derive this distribution,
from (25), write M∗ = DVρ,A(x∗), and use Ito’s lemma to show that the solution to (31)
with Z0 = 0 is the zero-mean Gaussian process

(26) Zt =

∫ t

0
exp

(
M∗(t − s)

)√
Σ∗ dBs,

whose time t covariance matrix is

(27) Cov(Zt) =

∫ t

0
exp(M∗s) Σ∗ exp(M∗s)′ ds

(see Karatzas and Shreve (1991, Sec. 5.6.A)). When the relevant eigenvalues of M∗ have
negative real part, the limit of (27) exists, and it is the covariance matrix of the (zero-mean
Gaussian) limiting distribution of the solution to (25).

The following examples use the diffusion approximation to describe “equilibrium”
behavior in a Hawk-Dove game under the “imitate the best realization” protocol (see
Section 3.1) and in a good Rock-Paper-Scissors game under the “linear dissatisfaction”
protocol (see Section 3.2).

Example A.6. Local diffusion approximation for “imitate the best realization” in Hawk-Dove.
Suppose that agents use imitative candidate selection (6) with c = 2, that matching is

limited matching with n-of-trials = 1, as in (9), and that the decision method is best,
as in (11). In addition, suppose that agents play a Hawk-Dove game with strategy set

48The result in Sandholm (2003) is stated for sequences of continuous-time processes, but also holds for
sequences of discrete-time processes as defined here. Compare Durrett (1996, Sec. 8.7).

49At boundary rest points, it is enough to consider eigenvalues corresponding to eigenvectors that are
tangent to the face of the smallest face of the simplex containing the rest point, since only strategies in the
support of the rest point exhibit nonnegligible fluctuations in use; see Sandholm (2003).
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S = {H,D} and a payoff matrix A ∈ RS×S with AHD > ADD > ADH > AHH. Then in a record
containing both strategies, the payoff associated with H is higher if and only if it is AHD.
Thus for a revising H player, (11) can be summarized as follows:

in game A , σHD

(
(H, πH), (D, πD)

)
= 1πH=AHH .

Thus

ρA
HD(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π) =
∑
`∈S

xD × xHx` × 1 = xDxH,

and similarly,

ρA
DH(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π) =
∑
k∈S

xH × xkxD × 1 = xHxD.

It is convenient to change the state variable from x = (xH, xD) ∈ X to y ∈ [0, 1] by letting
y = xH = 1 − xD. The mean dynamic (18) generated by ρ and A is then

(28) ẏ = Vρ,A (y) = (1 − y)ρA
DH(y) − yρA

HD(y) = y(1 − y)(1 − 2y).

The rest points of (28) are 0, 1, and y∗ = 1
2 .

To describe the diffusion approximation at interior rest point y∗ = 1
2 , let {YN

t }t∈{0,1/N,...}

be the Markov chain (3) expressed in terms of the new state variable, let {ȲN
t }t≥0 be its

piecewise constant interpolation, and let

(29) ZN
t =
√

N(ȲN
t − y∗)

be the local behavior process near y∗. To use approximation (25), we calculate the deriva-
tive

DVρ,A (y∗) = 6y2
− 6y − 1

∣∣∣∣
y=y∗

= −
1
2

and the local variance (24):

(30) Σ∗ = (1 − y∗)ρA
DH(y∗) + y∗ ρA

HD(y∗) = y∗(1 − y∗) =
1
4
.

Then (29) is approximated in distribution by the solution to
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Figure 16: The mean dynamic Vρ,A (y) = y(1 − y)(1 − 2y) (bottom) and the local variance function
Σρ,A (x) = y(1 − y) (top) in Example A.6.

(31) dZt = DVρ,A
i (y∗)Zt dt +

√

Σ∗ dBt = −
1
2

Zt dt +
1
2

dBt.

with Z0 = 0. Since M∗ ≡ DVρ,A(y∗) = −1
2 , the limiting distribution of {Zt} exists; it is

normal with mean 0, and by (27) its variance is∫
∞

0
exp(2M∗s) Σ∗ ds = −

Σ∗

2M∗
=

1
4
.

Using (29) to return to the scale of the original process, the diffusion approximation
(31) estimates the variance of the fluctuations of {YN

t } about y∗ as ( 1
√

N
)2
·

1
4 = 1

4N , and the
standard deviation of these fluctuations as 1

2
√

N
.

Dispersion estimates based on the diffusion approximation need not be accurate at
moderate population sizes if the linear approximation of expected motion and the constant
approximation of the dispersion of increments are inaccurate for states outside a small
neighborhood of y∗. But in the present example, the latter approximations are accurate
even at small population sizes. Figure 16 graphs the mean dynamic (28) and the local
variance function Σρ,A (x) = y(1 − y) (cf. equation (30)); clearly, the linear approximation
Vρ,A (y) ≈ DVρ,A (y∗)(y − y∗) and the constant approximation Σρ,A (x) ≈ Σ∗ lead only to
small errors for a wide interval of states around y∗ = 1

2 . This explains why the diffusion
approximation estimate of the empirical standard deviation is accurate even at small
population sizes (Table 3). _

Example A.7. Local diffusion approximation for “linear dissatisfaction” in good Rock-Paper-Scissors.
Suppose candidate selection is imitative as in (6) with c = 2, matching is complete

(8), and the decision method is linear-dissatisfaction (14). Following the approach from
Example A.1, we compute the off-diagonal terms of the revision protocol:
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ρA
ij(x) =

∑
(s,π)

pi(s | x) q(π | s, x,A) σi j(s, π)

= x j × 1 × σi j((i, (Ax)i), ( j, (Ax) j))

= x j
Amax

− (Ax)i

∆̄A
,

where the second equality uses the fact that the only strategy record that allows a revising
i player to switch to j is (s1, s2) = (i, j). Then using (18), we compute the mean dynamic as

ẋi =
∑
j,i

(
x jρ

A
ji(x) − xiρ

A
ij(x)

)
=

∑
j,i

(
x j

(
xi

Amax
− (Ax) j

∆̄A

)
− xi

(
x j

Amax
− (Ax)i

∆̄A

))
=

1
∆̄A

xi

∑
j∈S

x j((Ax)i − (Ax) j)

=
1

∆̄A
xi((Ax)i − x′Ax).(32)

As in Example A.1, we obtain the replicator dynamic sped up by a constant factor of 1
∆̄A .

To obtain the diffusion approximation at interior rest point x∗ = (1
3 ,

1
3 ,

1
3 ), we do not

need to completely compute the Jacobian DVρ,A(v). Instead, letting 1 denote the column
vector of ones, and letting Φ = I − 1

n11′ denote the orthogonal projection onto the set
Rn

0 = {z ∈ Rn : 1′z = 0}, the tangent space of the simplex, it is enough to compute
DVρ,A(x∗)Φ, which describes the action of Vρ,A(x∗) on vectors inRn

0 .50 A direct computation
(or see Sandholm (2010b, equation (8.29))) shows that

(33) DVρ,A(x∗)Φ =
1

∆̄A

(
diag(x∗) − x∗(x∗)′

)
AΦ =

1
3∆̄A

ΦAΦ,

where the second equality uses the fact that x∗ = 1
31.

In the case of good Rock-Paper-Scissors (equation (1) with w = 2 and ` = 1), the
projected Jacobian (33) and the local covariance matrix (24) become

50By construction, the Jacobian DVρ,A(x∗) maps Rn
0 to itself, and the local covariance matrix Σ∗ from (24)

and its square root
√

Σ∗ have rows and columns inRn
0 . Writing the stochastic differential equation (25) in its

integral form and using these facts shows that if Z0 ∈ Rn
0 , then Zt ∈ Rn

0 for all t ≥ 0. We can therefore replace
Zt with ΦZt in (25), after which we can associate Φ with the Jacobian appearing before it, obtaining the
matrix product suggested in the text. The same conclusion can be reached by applying a similar argument
to the explicit solution (26) of (25).
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M∗ ≡ DVρ,A(x∗)Φ =
1

27


−1 −4 5

5 −1 −4
−4 5 −1

 and Σ∗ =
10
27

Φ

The two eigenvalues of M∗ corresponding to eigenvectors inRn
0 are 5

27 (−11±
√

3i). Thus the
local diffusion process {Zt} defined by dZt = M∗Zt dt +

√

Σ∗ dBt has a limiting distribution,
which by (27) is zero-mean Gaussian with covariance matrix∫

∞

0
exp(M∗s) Σ∗ exp(M∗s)′ ds =

10
3

Φ.

Returning to the scale of the original process, the approximate covariance matrix
describing the fluctuations of {XN

t } around x∗ is 10
3N Φ, so the standard deviation of the

fluctuations in each component is approximately
√

20
9N ≈ 1.491 1

√
N

.
The prediction about the appearance of Figure 8(iii) is based on the following claim:

if we map the simplex X ⊂ R3 isometrically into the plane, then the quasi-stationary
distribution on X is mapped to a Gaussian distribution on the plane with independent
components, and hence circular level sets. To establish this claim, let XN

∞
be a random

vector with mean vector x∗ and covariance matrix 10
3N Φ. Let T : X → R2 be any transfor-

mation that maps X isometrically into R2 and (for definiteness) sends x∗ ∈ R3 to 0 ∈ R2.
Then we can write T(x) = R(x − x∗), where R ∈ R2×3 is a matrix whose two rows form
an orthonormal basis for R3

0. Now let YN
∞

= T(XN
∞

). By standard properties of Gaussian
distributions, YN

∞
is zero-mean Gaussian with covariance matrix

Cov(YN
∞

) = R Cov(XN
∞

)R′ = R
( 10
3N

Φ
)

R′ =
10
3N

RR′ =
10
3N

I,

and so has independent components, each with variance 10
3N . _

A.4 Random-walk tie-breaking

Here we describe the random-walk tie-breaking option for decision method best (11).
This option makes use of an auxiliary Markov chain {YN

t }t∈{0,1/N,...} that runs on the state
space X N

+ = {y ∈ X N : yi > 0 for all i ∈ S} according to the following transition law:51

51To interpret this process, imagine that there is an auxiliary population of N+n agents choosing strategies
in S. For each strategy in S, the population has one agent who always plays that strategy. The process {YN

t }

describes the behavior of the remaining N agents. In each period, one of these agents is chosen at random;
this agent then chooses one of the remaining N+n−1 agents at random and switches to that agent’s strategy.
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P
(
YN

k+1/N = y + 1
N (e j − ei)

∣∣∣ YN
k = y

)
= yi

Ny j + 1
N + n − 1

.

Sandholm (2010b, Example 11.4.3) shows that the stationary distribution of this irreducible
Markov chain is the uniform distribution on X N

+ .
Returning to the original model, let (s, π) be the record of a revising agent, and let

m j(s, π) = #{h : sh = j and πh = maxh′ πh′} be the number of pairs in the record comprised
of strategy j and the highest payoff in the record. Let y denote the current state of the
auxiliary process. Then decision method best with random-walk tie-breaking is defined by

(34) σi j(s, π, y) =
m j(s, π) y j∑

k∈S mk(s, π) yk
.

Thus strategy j is chosen with probability proportional both to the number of times in
the record that it is associated with the highest payoff and to the jth component of the
auxiliary Markov chain.52

52Note that (34) agrees with (11) when the antecedent of (11) is satisfied (i.e., when tie-breaking is
unnecessary).
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