
3.   Scope and Method  
This thesis provides some general results for n-player games; however, most of 

the research has been focused on 2-player 2-strategy (2x2) games. In several 

cases, it has been convenient to illustrate the obtained findings using specific 

types of 2x2 games, and for that purpose I have often selected 2x2 social dilemma 

games7. The first section of this chapter explains what social dilemmas are and 

how they can be formalised as 2x2 games; it also gives a brief account of some of 

the most relevant results obtained within each of the main branches of deductive 

game theory on the most famous 2x2 social dilemma, i.e. the Prisoner’s Dilemma, 

and of how these results relate to empirical findings. The second section of this 

chapter outlines the range of formal methods that have been used to analyse the 

models developed in this thesis. 

3.1. Social dilemmas 
Social dilemmas are social interactions where everyone enjoys the benefits of 

collective action, but any individual would gain even more without contributing to 

the common good (provided that the others do not follow her defection). Social 

dilemmas are by no means exclusive to human interactions: in many social 

contexts, regardless of the nature of their component units, we find that individual 

interests lead to collectively undesirable outcomes for which there is a feasible 

alternative where every individual would be better off. The problem of how to 

promote cooperation in these situations without having to resort to central 

authority has been fascinating scientists from a broad range of disciplines for 

decades. The value of understanding such a question is clear: in the social and 

biological sciences, the emergence of cooperation is at the heart of subjects as 

diverse as the first appearance of life, the ecological functioning of countless 

environmental interactions, the efficient use of natural resources, the development 

of modern societies, and the sustainable stewardship of our planet. From an 

engineering point of view, the problem of understanding how cooperation can 

emerge and be promoted is crucial for the design of efficient decentralized 

systems where collective action can lead to a common benefit despite the fact that 

                                                   
7 In chapter 5 I also investigate an n-player social dilemma. 
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individual units may (purposely or not) undermine the collective good for their 

own advantage. 

 

At the most elementary level, social dilemmas can be formalised as two-person 

games where each player can either cooperate or defect. For each player i, the 

payoff when they both cooperate (Ri, for Reward) is greater than the payoff 

obtained when they both defect (Pi, for Punishment); when one cooperates and the 

other defects, the cooperator obtains Si (Sucker), whereas the defector receives Ti 

(Temptation). Assuming no two payoffs are equal, the essence of a social dilemma 

is captured by the fact that both players prefer any outcome in which the opponent 

cooperates to any outcome in which the opponent defects (min(Ti, Ri) > max(Pi, 

Si)), but they both can find reasons to defect. In particular, the temptation to cheat 

(if Ti > Ri) or the fear of being cheated (if Si < Pi) can put cooperation at risk. 

There are three well-known social dilemma games: Chicken, Stag Hunt, and the 

Prisoner’s Dilemma. In Chicken the problem is greed but not fear (Ti > Ri > Si > 

Pi; i = 1, 2); in Stag Hunt, the problem is fear but not greed (Ri > Ti > Pi > Si; i = 1, 

2); and finally, both problems coincide in the paradigmatic Prisoner’s Dilemma 

(Ti > Ri > Pi > Si; i = 1, 2).  

 

Social dilemmas have been studied from different perspectives, including 

empirical approaches (both experimental and field studies), discursive theoretical 

work, game theory, and computer simulation. Within the domains of these four 

approaches much of the work has been devoted to the study of the Prisoner’s 

Dilemma (PD) or variations of it, often leading to conflicting conclusions 

(particularly relevant is the conflict between empirical work and classical game 

theory).  

 

The most widespread results about the PD come from classical game theory. 

When the PD is played once by instrumentally rational agents, the expected 

outcome is bilateral defection: rational players do not cooperate since there is no 

belief that a player could hold about the other player’s strategy such that it would 

be optimal to cooperate (the cooperative strategy is strictly dominated by the 

strategy of defecting). The situation is very different when the game is played 

repeatedly. In the (finite or infinitely) repeated game, the range of possible 
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strategies and outcomes is much wider and defecting in every round is no longer a 

dominant strategy. In fact, in the repeated PD, there is not necessarily one best 

strategy irrespective of the opponent’s strategy. As an example, Kreps et al. 

(1982) showed that a cooperative outcome can be sustained in the finitely 

repeated PD if a rational player believes that there is at least a small probability 

that the other player is playing “Tit for Tat” (TFT)8. 

 

Since assuming players are instrumentally rational is not enough to narrow the set 

of solutions of the repeated PD sufficiently, common knowledge of rationality is 

brought into play. Assuming common knowledge of rationality it can be proved 

using backwards induction that a series of bilateral defections is the only possible 

outcome of the finitely repeated PD (Luce and Raiffa, 1957)9. Put differently, any 

two strategies which are an optimal response to each other necessarily lead to a 

series of bilateral defections in the finitely repeated game. However, when the 

number of rounds is not limited in advance, a very wide range of possible 

outcomes where the two players are responding optimally to each other’s strategy 

still exists, even when assuming that the two players have detailed pre-planned 

strategies and these are common knowledge. Specifically, the “Folk Theorem” 

states that any individually-rational outcome10 can be a Nash equilibrium in the 

infinitely-repeated PD if the discount rate of future payoffs is sufficiently close to 

one. In this case, orthodox game theory has little to say about the dynamics 

leading a set of players to one among many possible equilibria. 

 

When classical game theoretical solutions of the PD and related games have been 

empirically tested, disparate anomalies have been found (see, for example, work 

reviewed by Colman (1995) in chapters 7 and 9, Roth (1995), Ledyard (1995), 

and Camerer (2003)). Generally, empirical studies have found that there is a wide 

variety of factors in addition to economic payoffs that affect our behaviour, and 

also that, while it is not easy to establish cooperation, levels of cooperation tend to 
                                                   
8 This is the strategy consisting of starting by cooperating, and thereafter doing what the other 

player did on the previous move. 
9 For a detailed analysis of the finitely repeated Prisoner’s Dilemma, see Raub (1988). 
10 An outcome giving each player at least the largest payoff that they can guarantee receiving 

regardless of the opponents’ moves. 
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be higher than those predicted by classical game theory (see e.g. Dawes and 

Thaler, 1988). The explanation of the clash between classical game theory and 

empirical evidence is, of course, that the assumptions required to undertake a 

game theoretical analysis do not hold: economic payoffs do not readily 

correspond to preferences (e.g. considerations of fairness frequently influence 

behaviour); actual preferences are sometimes neither consistent nor static nor 

context-independent; players’ cognitive capabilities are indeed limited, and 

players’ assumptions of others’ preferences and rationality assumed by game 

theory are therefore often wrong. 

 

Research on the PD within evolutionary game theory was boosted by the 

computer simulations and empirical studies undertaken by Axelrod (1984). 

Axelrod’s work represents a key event in the history of research on the PD. By 

inviting entries to two repeated PD computer tournaments, Axelrod studied the 

success of different strategies when pitted against themselves, all the others, and 

the random strategy. The strategy TFT won both tournaments and an extension of 

the second one. The extension, called ecological analysis, consisted of calculating 

the results of successive hypothetical tournaments, in each of which the initial 

proportion of the population using a strategy was determined by its success in the 

preceding tournament. Axelrod explains that TFT’s success is due to four 

properties: TFT is nice (it starts by cooperating), provocable (it retaliates if its 

opponent defects), forgiving (it returns to play cooperatively if the opponent does 

so), and clear (it is easy for potentially exploitative strategies to understand that 

TFT is not exploitable). TFT’s success is even more striking when one realises 

that it can never get a higher payoff than its opponent. Though severely criticised 

by some game theorists for drawing excessively on computer simulation and 

being partially flawed, Axelrod’s work is widely accepted to have greatly 

stimulated analytical work within the domain of evolutionary game theory and 

further research on the PD using computer simulation. Findings on the repeated 

PD from evolutionary game theory are summarised by Bendor and Swistak (1995; 

1998) and Gotts et al. (2003b); in particular, Gotts et al. (2003b) conclude that the 

assumptions about the dynamics of competition between strategies in mainstream 

EGT make the analytical results much less plausible as good approximations in 
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social than in biological contexts. Gotts et al. (2003b) have also extensively 

reviewed work on social dilemmas using computer simulation. 

 

As explained in the previous chapter, there are many different models in the 

branch of learning game theory, and their predictions for social dilemma games 

are far from uniform. In very general terms, models that have been designed to 

converge to Nash equilibria predict uncooperative solutions (see e.g. Fudenberg 

and Levine, 1998), while models including players who satisfice predict 

cooperative outcomes for certain ranges of aspiration thresholds (e.g. Karandikar 

et al., 1998; Bendor et al., 2001a, 2001b). There are also learning models where 

players do not satisfice and which lead to cooperative solutions; an interesting 

example is given by Erev and Roth (2001). Erev and Roth (2001) point out that 

the performance of reinforcement learning models in explaining human behaviour 

in games that facilitate reciprocation (i.e. games where players can coordinate and 

benefit from mutual cooperation, like the Prisoner’s Dilemma) had traditionally 

been remarkably less successful than in explaining other types of games (e.g. 

zero-sum games and games with unique mixed strategy equilibria, see McAllister, 

1991; Mookherjee and Sopher, 1994; Roth and Erev, 1995; Mookherjee and 

Sopher, 1997; Chen and Tang, 1998; Erev and Roth, 1998; Erev et al., 1999). As 

mentioned above, many people do learn to cooperate in the repeated Prisoner’s 

Dilemma, whilst most simple models of reinforcement learning used in 

experimental game theory predicted uncooperative outcomes. Interestingly, Erev 

and Roth (2001) show that such a result does not reflect a limitation of the 

reinforcement learning approach but derives from the fact that previous models 

used to fit experimental data assumed that players can only learn over immediate 

actions (i.e. stage-game strategies) but not over a strategy set including repeated-

game strategies (like e.g. tit-for-tat).  

3.2. Method 
In the following chapters we characterise the dynamics of various stochastic 

systems using a range of different techniques. The typical system investigated in 

this thesis contains a (potentially variable) finite number of players who interact to 

get certain payoffs, and are subject to stochasticity (either in their individual 

behaviour or in the dynamics of the population they belong to). In these systems, 

 45



each of the players can adapt its behaviour (i.e. learn), or the population of players 

as a whole adapts through an evolutionary process. The payoff obtained by each 

of these players depends on the actions undertaken by other players; this feature is 

what makes game theory a useful framework to study the system.  

 

This thesis makes extensive use of two distinct approaches to analyse the 

dynamics of these systems: computer simulation and mathematical analysis. As in 

Gotts et al. (2003a), it will be shown by example that mathematical analysis and 

simulation studies should not be regarded as alternative and even opposed 

approaches to the formal study of social systems, but as complementary. They are 

both extremely useful tools to analyse formal models, and they are 

complementary in the sense that they can provide fundamentally different insights 

on the same model (and also on one same question using different models, as 

argued by Gotts (2003b)). Chapter 4 will clearly illustrate the fact that the level of 

understanding gained by using these two techniques together could not be 

obtained using either of them on their own. Furthermore, each technique can 

produce both problems and hints for solutions for the other. The following 

explains how these two techniques have been used in this thesis.  

3.2.1. Computer simulation 
Simulations can usually provide an explicit and fully accurate representation of 

the original system and its stochastic dynamics. In this way, simulations allow us 

to explore the properties of formal models that are intractable using mathematical 

analysis, and they can also provide fundamentally new insights even when such 

analyses are possible.  

 

The specific modelling technique used in this thesis is called agent-based 

modelling (ABM). ABM is a modelling paradigm with the defining characteristic 

that entities within the target system to be modelled –and the interactions between 

them– are explicitly and individually represented in the model (Edmonds, 2000). 

Because of this, ABM is especially appropriate to simulate game theoretical 

models, where the description of the system in terms of the behavioural and 

adaptive rules of the individual players is usually very simple. Clearly, running a 

stochastic agent-based model in a computer provides a formal proof that a 
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particular micro-specification is sufficient to generate the pattern of behaviour that 

is observed during the simulation. However, one is usually interested not only in 

how the system can behave, but also in determining how the system behaves in 

general, which involves finding the probability distribution of different patterns. 

For this, it becomes necessary to run a large number of simulations with different 

random seeds and appropriately chosen initial conditions (see e.g. section 6.5.1). 

Most often, simulations cannot provide general closed-form results about how the 

system behaves, or about how it responds to changes in the parameter space. 

Thus, there is great value in complementing simulation with mathematical 

analysis. 

 

In the work reported in this thesis simulation is often used as a starting point. 

There are two reasons for this. First, the very nature of the systems analysed here 

(see beginning of section 3.2) means that they can be easily described (and 

implemented) within an ABM framework. Secondly, the models developed here 

have not been designed to be mathematically tractable, but to study phenomena 

that we considered particularly interesting; thus, at least at first, they often seem to 

be mathematically intractable. Mathematical work is then used to analyse the 

patterns observed in the initial simulations, and this analysis sometimes leads to 

the production of simpler models that exhibit similar behavioural patterns and 

which are amenable to more detailed mathematical analysis. An example of this 

interaction between simulation and mathematical analysis is the development of 

deterministic approximations (i.e. simpler models) of the stochastic dynamics of a 

more complex system (e.g. see chapter 4). Simulation and mathematical analyses 

are therefore used complementarily: with simulation allowing us to explore 

intractable models, to extract the key features of such models, and to build new 

simpler models that still keep such key features; and mathematical work 

illuminating the behaviour of the initial models, and providing in-depth analyses 

of the simpler models. In many cases simulations have also suggested promising 

ways of pursuing new theoretical results. 

 

As mentioned in the introduction, a great effort has been made in this thesis to 

make sure that every computational experiment conducted here can be easily 

inspected, rerun, scrutinised, reimplemented, and modified by independent 

 47



researchers. Given the amount of care put on this task, I place as much confidence 

on the results obtained using computer simulation as I do on the mathematical 

derivations.   

3.2.2. Mathematical analysis 
The original systems investigated in this thesis can all be meaningfully formalised 

as Markov processes. However, the (sometimes infinite) number of states and the 

nature of the transitions between different states often mean that traditional 

Markov analysis cannot be readily applied. In the presence of these difficulties, 

there are two approaches that have been followed to characterise these systems 

using mathematical analysis: (a) partial analysis of the original Markov process, 

and (b) in-depth analysis of an approximation to the original Markov process.  

 

The partial analysis often starts by finding out whether the Markov process is 

ergodic. If the process is ergodic, this means that the probability of finding the 

system in each of its states in the long run is unique (i.e. initial conditions are 

immaterial). This probability is also the long-run fraction of the time that the 

system spends in each of its states. Although calculating such probabilities may be 

unfeasible, one can always estimate them using computer simulation (see e.g. 

section 6.5.1). If the process is not ergodic, one can try to identify its various 

transient and recurring classes (see e.g. sections 4.7 and 5.4). This task may 

involve using very specific techniques which may be adequate only for certain 

types of Markov processes. A particular feature of Markov processes that often 

determines which techniques may be most appropriate for their analysis is how (if 

at all) the speed of change (e.g. the rate of learning) itself varies with time. As an 

example, it will be shown in chapter 4 that when the magnitude of change remains 

constant in time (e.g. in models where learning does not fade away in time), 

results from the theory of distance diminishing models (Norman, 1968, 1972) can 

be particularly useful. Another useful analysis that can be conducted on non-

ergodic Markov chains with various absorbing states consists in identifying which 

of these absorbing states are robust to small perturbations (Foster and Young, 

1990; Young, 1993; Ellison, 2000). This sort of analysis has been conducted in 

sections 4.8 and 5.7.3. 
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A complementary approach to the partial analysis of the original Markov process 

consists in studying a simpler approximation to it. In this thesis I have made 

extensive use of mean-field approximations. The use of mean-field (or expected- 

motion) approximations to understand the dynamics of complex stochastic models 

is common in the game theoretical literature (see e.g. Fudenberg and Levine, 

1998; Vega-Redondo, 2003). Note, however, that these are approximations whose 

validity may be constrained to specific conditions. As a matter of fact, there is a 

whole field in mathematics, namely stochastic approximation theory (Benveniste 

et al., 1990; Kushner and Yin, 1997), devoted to analysing under what conditions 

the expected and the actual motion of a system should become arbitrarily close in 

the long run. This is generally true for processes whose motion slows down at an 

appropriate rate (as explained by e.g. Hopkins and Posch (2005) when studying 

the Erev-Roth reinforcement model), but not necessarily so in other cases.  

 

In any case, mean-field approximations can be very useful even when it is known 

that they cannot be used to characterise the dynamics of the system in the long-

run. As an example, in chapter 4 we use the expected motion of the system to get 

insights about what areas of the state space may be particularly stable (or 

unstable), to identify their basins of attraction, to clarify the crucial assumptions 

of the model, to assess its sensitivity to various parameters, and to characterise 

and graphically illustrate the transient dynamics of the model. We also show that 

the expected-motion approximation, while valid over bounded time intervals, 

deteriorates as the time horizon increases. In fact, the approximation becomes 

very misleading when studying the asymptotic behaviour of the model.  

 

It is also worth mentioning that mean-field approximations are often used in the 

literature not only to average stochasticity out, but also to average out 

heterogeneity among players (e.g. see the studies conducted by Galán and 

Izquierdo (2005), Edwards et al. (2003), Castellano, Marsili, and Vespignani 

(2000), and Huet et al (2007)). Such approximations provide simpler, more 

abstract models which are often amenable to mathematical analysis and graphical 

representation. However, as pointed out above, even though they are usually 

useful, one should not forget that the insights provided by these mathematical 

abstractions could be misleading. 
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To conclude, let us mention that a range of other mathematical techniques (e.g. 

Brouwer’s fixed-point theorem in section 4.9, and graph theory in section 5.7.3) 

have been used to analyse various properties of the models developed in this 

thesis.  
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