
2.   Main assumptions in game theory 
This chapter is a critical dissection of the main assumptions embedded in each of 

the most advanced branches of deductive game theory at this time. We distinguish 

between game theory as a framework (which makes no assumptions about 

individuals’ behaviour or beliefs), classical game theory, evolutionary game 

theory, and learning game theory. Given the breadth and depth of game theory 

work, this thesis cannot present an exhaustive list of all the assumptions 

considered in the field. We focus on the most prevalent and relevant ones. The 

critical review of deductive game theory in this chapter is meant to serve as a 

framework where the assumptions whose impact is investigated in the subsequent 

chapters of this thesis can be precisely identified. It will also serve to identify 

what assumptions are retained in the models developed in this thesis. The last 

section of this chapter briefly describes some of the branches of game theory that 

are not purely deductive.  

2.1. Game theory as a framework 
Game theory as a framework is a methodology used to build models of real-world 

social interactions. The result of the modelling exercise is a game, i.e. a formal 

abstraction of the social interaction which is typically defined by2: 

• the set of individuals who interact (called players),  

• the different choices available to each of the individuals (called strategies),  

• and a payoff function that assigns a (usually numerical) value to each 

individual for each possible combination of choices made by every 

individual.  

Importantly, the abstract model developed within this framework does not make 

any assumptions about the players’ behaviour, neither in a normative nor in a 

positive sense. 

 
                                                   
2 We use here the representation of a game in strategic form for the sake of clarity. If the 

sequential structure of the game is complex (in terms of order of movement, players’ asymmetries 

and information flow), the representation of the game in extensive form (which explicitly details 

the order of events, the order of moves, and the information sets) may be more adequate (see 

chapter 1 in Vega-Redondo (2003) for details). 
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Game theory as a framework is particularly useful to describe and analyse 

decision-making in social interactions where the outcome potentially depends on 

the decisions made by several individuals (i.e. interdependent decision-making 

processes). According to the Stanford Encyclopaedia of Philosophy, “game theory 

is the most important and useful tool in the analyst’s kit whenever she confronts 

situations in which what counts as one agent’s best action (for her) depends on 

expectations about what one or more other agents will do, and what counts as 

their best actions (for them) similarly depend on expectations about her” (Ross, 

2006).  

 

As with any formal model, some of the complexity of the real-world situation 

represented will be lost in the process of abstraction. The rationale to undertake 

such a process of abstraction, which implies loss of descriptive accuracy to some 

extent, is that it will yield insights beyond those that could be achieved without 

the model. Furthermore, the knowledge acquired from the analysis of the abstract 

formal model can still be valid in other real-world situations whose important 

features are captured by the same formal model even though the model was not 

initially developed with such situations in mind. To the extent that the formal 

model captures the essence of the situation under study, enables us to establish 

inference processes that we could not undertake otherwise, and yields insights that 

can be transferred to other domains, we consider that the formal model is useful 

(Colman, 1995, pg. 6). 

 

Game theory as a framework makes two important assumptions. The first one is 

ontological and it refers to how social interactions are modelled in game theory. 

The framework used in game theory makes a clear distinction between structure 

(i.e. rules of the game) and action. The rules of the game fully constrain the set of 

possible actions that can be taken, i.e. there is no room for action to change 

structure. Obviously this is not the only ontological view that one can take when 

trying to distil the essence of social interactions. This clear cut between structure 

and action will prove useful in many circumstances, but it may not always be 

adequate; therefore it is important to be aware that there are many other ways of 

modelling social interactions (Hargreaves Heap and Varoufakis, 1995, chapter 1).  
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Assuming that the essence of the social interaction to be modelled is captured by 

the formal abstraction to a satisfactory extent (in terms of context, interplay 

between action and structure, history effects…) the most important assumption 

made when using game theory as a framework relates to the definition of the 

payoff function. In most branches of game theory, payoffs are meant to represent 

individuals’ preferences for each possible outcome of the social interaction. The 

notable exception is evolutionary game theory, where payoffs most often (but not 

always) represent Darwinian fitness. The following two sections explain this in 

detail. 

2.1.1. Payoffs interpreted as preferences 
The payoff function for each player is effectively a preference ordering over the 

set of possible outcomes. Behind the concept of “payoff function” is the implicit 

assumption that preferences will guide action (otherwise there would not be much 

point in defining a payoff function). While seemingly innocuous, this underlying 

assumption does have certain philosophical implications which, though 

fascinating, fall out of the scope of this thesis (Hargreaves Heap and Varoufakis, 

1995, pg. 12). 

 

A common misconception about game theory relates to the roots of players’ 

preferences. There is no assumption in game theory (not even as a framework) 

that players’ preferences are formed in complete disregard of each other’s 

interests. On the contrary, preferences in game theory are assumed to account for 

everything, i.e. they may include altruistic motivations, moral principles, and 

social constraints, for example (Colman, 1995, pg. 301; Vega-Redondo, 2003,   

pg. 7). 

 

Game theory as a framework assumes that players’ preference order is well 

defined, i.e. it satisfies the conditions of reflexivity, completeness, and transitivity 

(Hargreaves Heap and Varoufakis, 1995, pg. 6); and that their preference order 

does not change. If no further assumption is made on individuals’ preferences, 

these are said to be ordinal. Ordinal preferences provide no information about the 

strength of preferences, so arithmetic operations on ordinal payoffs are not 

meaningful. An admittedly obvious point, but one which may be worth noting, is 
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that direct comparisons of ordinal preferences between different players (e.g. 

“player A likes outcome X more than player B does”) are meaningless. 

 

In almost all game theoretical models, however, preferences are assumed to be 

cardinal, i.e. payoffs take numerical values on an interval scale. With this 

assumption, payoffs give a measure of the strength of the preferences, and 

therefore payoff differences are indeed meaningful. If nothing more than 

cardinality is assumed, comparisons of preferences between different players are 

still meaningless.  

 

Most game theoretical models go beyond the assumption of cardinal preferences: 

they interpret payoffs as von Neumann-Morgenstern utilities (Colman, 1995, 

section 2.1; Hargreaves Heap and Varoufakis, 1995, section 1.2; Vega-Redondo, 

2003, pg. 7). The benefit of making such a strong assumption is that it allows 

game theorists to use expected utility theory to evaluate probability distributions 

over possible outcomes of the game. (Note that payoffs relate to outcomes that are 

certain). It is important to remember that these models are –implicit or explicitly– 

assuming considerably more about players’ preferences than just cardinality: 

cardinality by itself is not enough to formally justify models where individuals 

maximise expected payoffs. Expected payoff maximisation requires preferences to 

be well defined (see above) and three extra assumptions: continuity, preference 

increasing with probability, and independence (Hargreaves Heap and Varoufakis, 

1995, pg. 10). When all these assumptions hold, payoffs embody players’ 

attitudes to risk, and then it is true that an individual who acts on her preference 

ordering acts as if she is maximising her expected payoff (see chapter 2 in Colman 

(1995) for details). 

 

Finally, the strongest assumption on preferences relates to social comparisons. 

There are (relatively few) models where payoffs interpreted as preferences are 

compared across players. This is a very strong assumption which finds its roots in 

the social philosophy of utilitarianism, and is not commonly observed in game 

theoretical models that interpret payoffs as preferences; however, it can certainly 

be found in the literature (see e.g. Bendor et al. (2004)). In stark contrast, it will 

be shown in the next section that most models in evolutionary game theory 
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interpret payoffs as fitness, and they actually require comparing the payoffs 

obtained by different players (and often performing arithmetic operations with 

them). 

2.1.2. Payoffs in evolutionary models  
In evolutionary game theory models, the emphasis is not so much on the players, 

but on the strategies. In fact, it is most often understood that each player is pre-

programmed to play a certain (pure or mixed) strategy, thus establishing 

equivalence between players and strategies. The interest then lies in studying the 

evolution of large populations of players who repeatedly interact to play a game. 

The aim is identifying which strategies (i.e. type of players) are most likely to 

thrive in this “ecosystem” and which will be wiped out by selection forces. In this 

context, payoffs are not interpreted as preferences, but as a value that measures 

the success of a strategy in relation to the others. Selection forces then act to 

favour strategies with higher payoffs. Thus, in models of biological (as opposed to 

cultural) evolution, payoffs are most often interpreted as Darwinian fitness. The 

crucial point here is that payoffs obtained by different players will be compared 

and used to determine the relative frequency of different types of players (i.e. 

strategies) in succeeding generations. This may not be a major assumption when 

modelling biological evolution, but it is one that cannot be ignored if evolution is 

interpreted in cultural terms.  

2.2. Classical game theory 
Classical game theory is devoted to the study of how instrumentally rational 

players should behave in order to obtain the maximum possible payoff in a formal 

game. Thus, as a deductive and normative branch of game theory, one could argue 

that classical game theory itself is incapable of being empirically tested and 

falsified (Colman, 1995, pg. 6). What we can clearly infer from the combination 

of empirical research and game theory is that, if empirical observations clash with 

game theoretical solutions, then (a) the observed real-world situation does not 

correspond to the abstracted game, or (b) at least one assumption made by game 

theory does not hold (or both (a) and (b)). Hence the importance of clearly 

identifying the assumptions made in classical game theory. The following sections 
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analyse the two most relevant ones: complete availability of information and 

instrumental rationality. 

2.2.1. Availability of information 
A major assumption embedded in classical game theory (CGT) relates to 

information availability. This is a key issue, since information availability 

crucially affects what course of action may be regarded as rational. As an 

example, if players did not know anything about the game (not even its strategic 

nature) beyond the payoff they obtain after playing certain actions, many very 

simple learning models could be regarded as rational. CGT is mostly concerned 

with games of complete information. In these games, it is assumed that players 

not only know the rules of the game and their own payoffs, but also their 

counterparts’ payoff functions. Furthermore, complete availability of information 

is assumed to be common knowledge. Common knowledge (CK) in game theory 

often comes with a certain order: zero-order CK of X is just the assumption that X 

prevails for every player (e.g. zero-order common knowledge of complete 

information (CKCI) means that every player has complete information); first-

order CK is the assumption that every player knows that X prevails for every 

player (e.g. first-order CKCI means that every player knows that every player has 

complete information); in general, (n)th-order CK is the assumption that (n-1)th-

order CK is known by every player. If no order is specified, it is assumed that the 

order is infinite (this produces an infinite recursion of shared assumptions). For 

different accounts of the meaning of common knowledge see Vanderschraaf and 

Sillari (2007).  

 

CGT also considers games of incomplete information. As a matter of fact, if one 

is happy to accept certain (strong) conditions on what may count as a “rational 

belief”, the distinction between complete and incomplete information is not 

essential, since games of incomplete information can be easily transformed into 

games of complete information (Harsanyi, 1967a, b, 1968). The basic idea behind 

this transformation consists in assuming that there are different “types of players”, 

each of them with a different payoff function. Then, one must see each player’s 

uncertainty about her counterparts’ payoff functions as deriving from the player’s 

uncertainty about which types of players her counterparts are. Finally, the 
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transformation requires applying Harsanyi and Aumann’s argument about the 

impossibility of players with mutual knowledge of rationality “agreeing to 

disagree” (Aumann, 1976). This last step ensures that rational players hold 

common beliefs about the probabilities that their counterparts will turn out to be 

of one type or another. Once this assumption is made, the analysis of the game 

with incomplete information is essentially the same as one of complete 

information. 

2.2.2. Instrumental rationality 
The concept of instrumental rationality in classical game theory finds its clearest 

roots in Hume’s Treatise on Human Nature. In CGT rationality is understood as 

the capacity of identifying the actions that best satisfy the person’s predefined 

objectives (Hargreaves Heap and Varoufakis, 1995, pg. 7), i.e. rationality plays no 

role in setting objectives. This basically means that instrumentally rational players 

have unlimited computational capacity devoted to maximise their individual 

payoff function, which is defined in advance. The assumption of rationality in 

CGT has been widely challenged. One of the alternatives that has received great 

attention is Simon’s (1957) original concept of procedural rationality, later recast 

as bounded rationality (Simon, 1982) mainly for modelling purposes. Simon 

(1982) emphasises that people have limited knowledge of their situations, limited 

ability to process information, and limited time to make choices. 

 

In any case, the main challenge within CGT comes from the fact that in most 

games there is no maximising strategy for any given player regardless of her 

counterparts’ actions, i.e. rationality remains undefined in the absence of beliefs 

about what the other players will do. Naturally, this belief-dependency of 

rationality has led to different concepts of rationality based on different 

assumptions about what beliefs about other players’ behaviour are allowed. The 

following sections explain the three most important approaches, namely: 

1. Dominance reasoning. 

2. Rationalisable strategies. 

3. Consistently aligned beliefs: Nash equilibrium.   
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It is worth mentioning at this point that –most often– the three approaches 

outlined above make use of two extra assumptions, namely: common knowledge 

of complete information (CKCI; explained in the previous section), and common 

knowledge of rationality (CKR). Following the definition of common knowledge 

outlined in the previous section, first-order CKR is the assumption that every 

player knows that every player is rational (rationality is understood following one 

of the 3 interpretations mentioned above); (n)th-order CKR is the assumption that 

(n-1)th-order CKR is known by every player. If no order is specified, it is 

assumed that the order of CKR is infinite (see Aumann (1976) for a formal 

definition). CKCI and CKR are embedded in the definitions of approaches (2) and 

(3) mentioned above. Without assuming CKCI and CKR, most games are not 

solvable regardless of the approach taken. For the sake of clarity the following 

subsections will discuss the role of CKR assuming that CKCI comes with it. 

Dominance reasoning 
Rationality can be minimally identified with “not playing (strictly) dominated 

strategies”3 (Vega-Redondo, 2003, pg. 32). This view of rationality does not 

require any assumption about the behaviour of other players: there is no belief that 

a player could hold about the other players’ strategies such that it would be 

optimal to select a dominated strategy. In general, one has the option to reject only 

those strategies that are dominated by other pure strategies or, alternatively, 

choose to reject the (potentially larger) set of strategies that are dominated by 

some mixed strategy.  

 

The elimination of dominated strategies by each player rarely leads to one single 

profile of strategies (the one-shot Prisoner’s Dilemma is an exception for this), so 

CKR is usually brought into play. CKR allows the process of successive 

elimination of dominated strategies: with this interpretation of rationality, first-

order CKR means that players assume that no player will select a dominated 

strategy. The elimination of certain strategies when assuming (n)th-order CKR 

may open the door to eliminate more strategies by assuming (n+1)th-order CKR. 
                                                   
3 For a player A, strategy SA is (strictly) dominated by strategy S*A if for each combination of the 

other players’ strategies, A’s payoff from playing SA is (strictly) less than A’s payoff from playing 

S*A (Gibbons, 1992, p. 5). 
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This iterative process goes on until no strategies can be further eliminated. When 

this process leads to one single strategy for every player (i.e. one single outcome) 

then the game is said to be dominance solvable. 

Rationalisable strategies 
A stronger interpretation of rationality dictates that rational players maximise their 

expected payoff on the basis of some expectations about what the others will do 

(clearly this interpretation prevents players from playing dominated strategies). 

Using this concept of rationality and assuming CKR leads to the definition of 

rationalisable strategies: rationalisable strategies are those that remain after 

making such assumptions (Bernheim, 1984; Pearce, 1984). The term 

rationalisable derives from the fact that every player can defend choosing such a 

strategy (i.e. rationalise it) on the basis of beliefs that are consistent with the 

assumption of CKR. However, given that each player may have many different 

rationalisable strategies (by holding different beliefs about her counterparts’ 

beliefs), it could well be the case that once the game is played (i.e. once every 

player has selected a specific rationalisable strategy), some of these beliefs are 

proven wrong. To be clear, a set S of rationalisable strategies (one for each player) 

may derive from beliefs where one of the players is assuming that one of her 

counterparts will select a (rationalisable) strategy different from the one assigned 

to this counterpart in the set S itself. Informally, this would occur if one of the 

players presumes that one of her counterparts will “make a mistake” by expecting 

something that the player does not intend to do (even though this “mistaken 

belief” is perfectly consistent with CKR). In other words, the beliefs underlying 

rationalisable strategies must be consistent with the assumption of CKR for each 

individual player independently, but they may be inconsistent across players. 

Hargreaves Heap and Varoufakis (1995, pp. 51-52) give a 2-player example 

where both players select a rationalisable strategy on the basis of beliefs that are 

inconsistent across players. The following section explains that imposing 

consistency of beliefs across players leads to the (stronger) concept of Nash 

equilibrium. 

 

Let us conclude this section by relating the concept of rationality explained here 

and that assumed when conducting dominance reasoning (see previous section). 
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As mentioned above, rationalisable strategies are necessarily undominated; a 

natural question is then: are iteratively undominated strategies always 

rationalisable? The answer to this question for 2-player games is yes (Pearce, 

1984). In other words, for two player games these two concepts are equivalent. 

This is not true, however, for games involving more than two players. In such 

games, there can be iteratively undominated strategies that are not best response 

to any strategy profile. The subtle difference between these two concepts of 

rationality is brilliantly explained by Vega-Redondo (2003, pp. 66-68).  

Consistently aligned beliefs: Nash equilibrium 
The previous section showed that if players select rationalisable strategies, the 

outcome of the game may be such that the beliefs of some players are proven 

wrong by the choices actually made by other players. The concept of Nash 

equilibrium derives from imposing the additional constraint that beliefs must be 

consistently aligned across players. Thus, a Nash equilibrium is a set of 

rationalisable strategies (one for each player) whose implementation confirms the 

expectations of each player about the other players’ choices (Hargreaves Heap and 

Varoufakis, 1995, pg. 53). A corollary of this definition is that Nash equilibria are 

formed by sets of strategies that are best replies to each other. This simple 

shortcut through the cumbersome web of players’ beliefs over their counterparts’ 

beliefs is probably one of the main factors that explain the success of the Nash 

equilibrium (NE) in the social sciences. Another reason is that NEs can be 

interpreted in a number of meaningful and useful ways (Holt and Roth, 2004). 

The concept of NE, however, is not free from problems. There are many games 

without any NE in pure strategies, and many others with more than one. In these 

cases, the assumption of consistently aligned beliefs is particularly problematic. 

How can players coordinate their beliefs in the absence of communication? The 

problem of multiple NE is particularly acute in repeated games, as illustrated by 

the extensive variety of “folk theorems” available in the literature. In broad terms, 

“folk theorems” demonstrate that repeated interactions typically allow for a wide 

range of equilibrium behaviour. Vega-Redondo (2003, chapter 8) reviews several 

“folk theorems”, differing in their time horizon (finite or infinite), information 

conditions (complete or incomplete information, and perfect or imperfect 

observability), and equilibrium concept (Nash or subgame perfect). 
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Let us conclude this section by stating that the concept of NE is significantly 

stronger than that of rationalisable strategies. In particular, Bernheim (1984) 

showed by example that one can find rationalisable strategies that are not part of 

any NE (i.e. there is no NE that assigns a positive weight to them). In other words, 

there are outcomes where all players are selecting a rationalisable strategy, and 

which cannot be interpreted as the result of a mis-coordination among players that 

were hoping to arrive at a NE. This clearly indicates that the notion of 

rationalisability embodies something broader than equilibrium mis-coordination 

(Vega-Redondo, 2003, pg. 65).  

Refinements of Nash equilibrium 
The problem of multiple Nash equilibria outlined in the previous section has led 

to the proposal of countless refinements aimed at eliminating those NEs that are 

not considered plausible or desirable for not fulfilling some additional condition 

(see van Damme (1987) for a comprehensive study). Unfortunately, so many 

refinements have been developed by now that “in many games which have 

multiple Nash equilibria, each equilibrium could be justified by some refinement 

present in the literature” (Alexander, 2003). In this section we briefly present only 

one, namely “trembling hand perfection” in its strategic-form version (see Vega-

Redondo, 2003, chapter 4), since the idea underlying this refinement will be used 

extensively in this thesis.    

 

The “trembling hand perfect” refinement, which was proposed by Selten (1975), 

eliminates those Nash equilibria that are not robust to small mistakes. The 

refinement process assumes that players’ hands may tremble, i.e. players may 

select an unintended action (i.e. deviate from the equilibrium) with small 

probability. An alternative view of the same phenomenon is that players may 

experiment with small probability. Some NEs may resist the possibility of these 

trembles and some may not: those NEs that do not survive arbitrarily small 

trembles are eliminated. Slightly more formally, the set of trembling hand perfect 

equilibria in a game is the limit of the sequence of Nash equilibria in perturbed 

versions of the game (i.e. versions of the game played with trembles) as the 

probability of trembles goes to zero. In 2-player strategic-form games, an 

equilibrium is perfect if and only if it is a Nash equilibrium that involves no 
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weakly dominated strategies by either player (Van Damme, 1987, Theorem 3.2.2). 

The reasoning behind this refinement will prove to be very useful to reduce the set 

of possible outcomes of the game in the models developed in chapters 4 and 5 of 

this thesis. 

2.3. Evolutionary game theory 
Many biological and socio-economic systems are governed, at least to some 

extent, by evolutionary pressures. Such evolutionary systems may be composed of 

entities of very different nature, such as molecules, cells, genes, animals, 

organisations, ideas, behaviours… but they all share the three common features 

that characterise any evolutionary system: diversity, selection, and replication.   

 

Diversity: entities in the system are not all the same; they show dissimilarities that 

affect their so-called individual fitness. Fitness is just a measurable indicator that 

determines how a population of entities evolves: entities with higher fitness will 

tend to spread relatively more than those with lower fitness. The precise 

mechanism that links current fitness with future population composition is the 

selection mechanism, which is explained in the next point. Note that in general 

this selection mechanism reduces the diversity of the system, since it favours 

some existing entities over others. There may be, however, mechanisms that tend 

to preserve the heterogeneous nature of the system: most evolutionary systems are 

subject to processes that create and maintain diversity. This diversity-generating 

mechanism acts in the opposite direction to the selection force, and it is the only 

mechanism that may preclude the system from locking-in. In biological systems, 

diversity generally stems from genetic mutations whereas in many socio-

economic systems, it is innovations, asymmetries in the flow of information, or 

even simple mistakes, which are often responsible for the incessant appearance of 

different forms of behaviour. The process by which new entities appear in an 

evolutionary system is usually called mutation in biological contexts and 

experimentation or innovation in socio-economic contexts.  

 

Selection: The mechanism of selection is a discriminating force that favours some 

specific entities rather than others. By selecting only certain entities from the 

population, this selection force diminishes the heterogeneity of the system. As 
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mentioned above, the criterion by which some entities are selected among the 

population rather than others is usually called fitness. In evolutionary game theory 

strategies (which may be seen as behavioural phenotypes) are selected on the 

basis of the payoff they obtain, i.e. the relative frequency of strategies which 

obtained higher payoffs in the population will increase at the expense of those 

which obtained relatively lower payoffs.  

 

Replication / Inheritance / Preservation: The properties of the entities in the 

system (or the entities themselves) are preserved, replicated or inherited from one 

generation to the next at least to some extent. Replication mechanisms can be 

carried out through a range of processes, from genetic transmission in biological 

systems to social learning processes such as imitation in some socio-economic 

contexts. 

 

The main assumption underlying evolutionary thinking is that the entities which 

are more successful4 at a particular time will have the best chance of being present 

in the future. In biological and economic contexts, this assumption often derives 

from competition among entities for scarce resources or market shares. In social 

contexts, evolution is often understood as cultural evolution, where this refers to 

changes in behaviour, beliefs, or social norms over time (Alexander, 2003), and 

may be justified by “the tendency of human behaviour to adjust in response to 

persistent differentials in material incentives” (Sethi and Somanathan, 1996,      

pg. 783). 

 

Evolutionary game theory (EGT) is devoted to the study of the evolution of 

strategies. In biological systems, players are most often assumed to be pre-

programmed to play one given strategy, so studying the evolution of a population 

of strategies becomes formally equivalent to studying the evolution of a 

population of players. By contrast, in socio-economic models, players are usually 

assumed to live forever, and switch their strategy following evolutionary 

pressures. The role of players relative to the role of strategies is irrelevant for the 

formal analysis of the system, where –in both cases– it is strategies that are 

                                                   
4 Note that this is a measure of relative performance. 
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actually subjected to evolutionary pressures. Thus, without loss of generality and 

for the sake of clarity, we take here the biological stand and assume that players 

select always the same strategy.  

 

Thus, EGT is devoted to the study of large populations of players who repeatedly 

interact to play a game. Strategies are subjected to selection pressures in the sense 

that the relative frequency of strategies which obtain higher payoffs in the 

population will increase at the expense of those which obtain relatively lower 

payoffs. The aim is to identify which strategies (i.e. type of players) are most 

likely to thrive in this “evolving ecosystem of strategies” and which will be wiped 

out by selective forces. As mentioned before, payoffs in evolutionary contexts are 

not interpreted as preferences; instead they provide the value that is used to 

measure the relative success of one strategy in relation to the others. 

2.3.1. Evolutionary stability: evolutionary stable strategies 
The study of dynamic systems often begins with the identification of their stable 

states. This is often called static analysis, as it does not consider the dynamics of 

the system explicitly, but only its rest points. The most important concept in the 

static analysis of EGT is the concept of Evolutionary Stable Strategy (ESS), 

proposed by Maynard Smith and Price (1973). Very informally, a population 

playing an ESS is uninvadable by any other strategy (Weibull, 2002). To be more 

precise, consider a very large population of players who are repeatedly drawn at 

random to play a 2-player symmetric game. Initially all players are selecting the 

same (incumbent) strategy. That strategy is an ESS if there exists a positive 

invasion barrier such that for any given mutation that may occur and assuming 

that the population share of individuals playing the mutant strategy falls below 

this barrier, the incumbent strategy earns a higher payoff than the mutant strategy 

(Weibull, 1995, pg. 33). The original concept of ESS has proven to be 

tremendously useful, but it is important to be aware of the assumptions 

underpinning its theoretical framework: the ESS is derived for a system composed 

of a single infinite population of individuals who are repeatedly randomly drawn 

to play a 2-player symmetric game; furthermore, it only considers monomorphic 

populations (all individuals are playing the same strategy) which can be invaded 

by only one type of mutant strategy at a time.  
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In particular, the assumption of one single infinite population has a number of 

important implications. For a start, this assumption is in effect a mean-field 

approximation used to equate the average payoff actually obtained by a 

population with the expected value of a probability distribution of payoffs (which 

would be obtained by explicitly modelling players’ interactions). It is also the 

assumption that justifies treating as equivalent a mixed strategy and a population 

profile where pure strategies are played in the population with the frequency 

induced by the corresponding probability in the mixed strategy (see Vega-

Redondo, 2003, pp. 356-7). Finally, it effectively eliminates the impact of 

arbitrarily small invasions on the incumbent population. This last point is best 

explained with a simple example. Consider a 2-player population where player i 

can impose a punishment of magnitude P on player j at a cost of C < P. Clearly, 

punishing j would give a relative advantage to i over j, so this behaviour would be 

evolutionary favoured. Now consider a large population of potentially punishable 

players j, and think of the effect of the same single punishment conducted by one 

mutant i on one of the players in the incumbent population. Player i will incur the 

cost C, but the average payoff of the incumbent population will only decrease in P 

divided by the size of the population n. If n is infinite, then the effect of i’s 

punishment on the incumbent population is just zero. This reasoning is important 

because it is behind the (correct) argument that the concept of ESS is a refinement 

of (symmetric 2-player games) Nash equilibrium. Without the assumption of 

infinite populations, the argument does not necessarily hold (see Galán and 

Izquierdo (2005) for an illustration). To avoid this issue without having to impose 

infinite populations, an alternative is to make sure that the smallest invasion 

barrier expressed as a population share exceeds 1/n (Weibull, 1995, pp. 33-34).  

2.3.2. Evolutionary dynamics: the replicator dynamics 
Naturally, to study the dynamics of an evolutionary system explicitly (i.e. beyond 

the analysis of its rest points), it becomes necessary to specify the particular 

process that governs such dynamics. The most extensively studied dynamic 

process in EGT is the replicator dynamics, proposed by Taylor and Jonker (1978).  

In the replicator dynamics (RD), payoffs are interpreted as the number of viable 

offspring that inherit the same behavioural phenotype (i.e. strategy) as their 

(single) parent. The theoretical model underpinning the basic RD also assumes a 
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single infinite population of individuals who are repeatedly randomly drawn to 

play a 2-player symmetric game. Furthermore, individuals can only play one out 

of a finite set of pure strategies, and mutations (and random drift) are not 

allowed5. This set of assumptions is enough to fully determine a deterministic 

dynamic process in which the rate of change in the frequency of any given 

strategy is equal to the relative difference between its average payoff and the 

average payoff obtained across all strategies in the population. Most often, time is 

treated as a continuous variable, and this allows the formalisation of the dynamic 

process as a system of ordinary differential equations. 

 

With these assumptions in place, game theorists have been able to derive a chain 

of useful mathematical results that link the concept of ESS, the dynamics of the 

basic RD and the concept of NE. The logical chain is as follows: the population 

profile induced by an ESS is asymptotically stable in terms of the RD (Hofbauer 

et al., 1979); the mixed strategy corresponding to an asymptotically stable 

equilibrium of the RD is in (symmetric) perfect Nash equilibrium with itself (see 

proof in e.g. Weibull, 1995, section 3.4); and finally, a mixed strategy played at a 

symmetric Nash equilibrium (in a 2-player symmetric game with a finite set of 

pure strategies) induces a stationary population state of the RD (see proof in e.g. 

Vega-Redondo, 2003, pg. 367). 

2.3.3. Further developments 
While undoubtedly extremely useful, the assumptions embedded in the original 

concept of ESS and in the basic RD limit the applicability of the analytical results 

obtained with them, particularly in social (rather than biological) contexts (see e.g. 

Probst, 1999; Gotts et al., 2003b; Vega-Redondo, 2003, pg. 372). These concerns 

led to the development of more general frameworks which would encompass as 

particular cases not only the RD but also a wider range of dynamic processes, and 

could be applied not only to 2-player symmetric games, but also to general games. 

Of special interest are the multi-population models with regular and payoff 

monotonic dynamics.  

                                                   
5 Mutations can be superimposed as a separate component of the dynamic process (see e.g. Imhof 

et al. 2005). 
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• Multi-population models study n-player games, where each player is 

randomly drawn from a distinct (infinite) population. This setting allows 

modelling any finite game in normal form where players in different 

positions are subjected to independent evolutionary pressures.  

• Regularity ensures that the proportional rates of change of strategies are 

well defined and are continuously differentiable.  

• Finally, payoff monotonicity is a mild condition which imposes that for 

any given pair of strategies in any particular population, their proportional 

rates of change are ordered in the same way as their respective average 

payoffs (Vega-Redondo, 2003, pg. 377).  

 

It turns out that most of the analytical results linking the concepts of ESS, NE, and 

the dynamics of the basic RD can be carried over to this general framework (once 

the appropriate generalisations for these concepts have been defined; see e.g. 

Weibull (1995, chapter 5) and Vega-Redondo (2003, chapter 10)). This type of 

general framework6 represents a remarkable step forward in generality and, 

consequently, the applicability of the analytical results obtained with them is 

greatly increased. However, these general models still make two assumptions that 

somewhat limit their applicability to social contexts (Probst, 1999): regularity and 

infinite populations.  

 

As pointed out by Probst (1999), the assumption of regularity rules out many 

adaptation mechanisms that are considered of much interest in modelling social 

systems (e.g. best-response dynamics). This assumption, which is rarely made in 

learning game theory (LGT), is one of the main differences between EGT models 

and LGT models, in terms of the mathematical properties of the induced formal 

systems.  

 

The assumption of infinite populations effectively averages out the stochasticity 

of the system, so the obtained deterministic dynamics can be formalised as a 

system of differential equations. This assumption has greater implications than 

one may initially suspect. As Traulsen et al. (2006) point out, “the finiteness of 
                                                   
6 There are various similar versions (see Weibull, 1995). 
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populations may indeed lead to fundamental changes in the conventional picture 

emerging from deterministic replicator dynamics in infinite populations”. To be 

more precise, any model with finite populations can be formalised as a Markov 

process, and the system of differential equations is the approximation of the 

Markov process in the limit as the population tends to infinity. Also, one is often 

interested in studying the behaviour of the system in the long run, which involves 

calculating the limit of the dynamics as time goes to infinity. The problem in 

doing this is that results can be dramatically different depending on the order in 

which one takes these two limits. This will be clearly illustrated in a somewhat 

different context in chapter 4. Fortunately, our theoretical knowledge of these 

issues has progressed immensely in the last few years. In particular, the seminal 

paper by Benaim and Weibull (2003) is a breakthrough in the field of stochastic 

approximation in EGT. In any case, it is clear that “care is therefore needed in the 

application of these approximations” (Beggs, 2002).  

 

In summary, the study of the evolution of finite populations is significantly 

different from that of infinite populations (both in terms of the methods that are 

adequate for their analysis and on the results obtained with them); thus, it is not 

surprising that the analysis of finite evolutionary systems is nowadays a field of 

great scientific dynamism (see e.g. Nowak et al., 2004; Taylor et al., 2004; Imhof 

et al., 2005; Santos et al., 2006; Traulsen et al., 2006).  

2.3.4. Stochastic finite systems 
Once it has been acknowledged that stochasticity plays an important role in the 

analysis of finite evolutionary systems, the main challenge for current EGT seems 

to lie in understanding the impact of the various other assumptions made in 

traditional EGT on these finite stochastic systems.  

 

A feature of the system that has been long known to play a crucial role is the 

mechanism by which individuals pair to play the game. The pairing algorithm 

does not necessarily have to be imposed by a fixed population structure, but may 

be actively conducted by the players themselves (Eshel and Cavalli-Sforza, 1982). 

Naturally, the impact of the standard assumption (random encounters) is 

investigated by considering other pairing mechanisms. One of the first studies to 
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show the relevance of different population structures in finite systems was 

conducted by Nowak and May (1992; 1993), who used a spatial model (where 

local interactions occurred between individuals occupying neighbouring nodes on 

a square lattice) to show that stable population states for the prisoner's dilemma 

depend upon the specific form of the payoff matrix. For a review of several 

studies in the context of social dilemmas that consider populations where some 

pairs of agents are more likely to interact than others see Gotts et al. (2003b). Of 

particular interest is the field of study on tags (Holland, 1993). Tags are arbitrary 

social marks that, in principle, are not linked to any particular form of behaviour, 

but they do influence the way individuals interact: individuals with similar tags 

have a preference to interact with each other (see e.g. Riolo, 1997; Hales, 2000; 

Riolo et al., 2001; Edmonds and Hales, 2003). In chapter 6 we investigate various 

pairing mechanisms and, in particular, we analyse one which is formally 

equivalent to the use of tags. For a recent illustration of the latest developments in 

the field of structured populations in finite systems, see Santos et al. (2006), who 

study social dilemma games played in (fixed) networks with various degrees of 

heterogeneity in the degree distributions. The most recent literature in this field is 

mainly focused on studying the emergence of cooperation in spatially structured 

populations (see e.g. Hauert and Doebeli, 2004; Doebeli and Hauert, 2005; 

Németh and Takács, 2007). For a recent illustration of the fact that allowing 

players to selectively choose their partners can have dramatic effects on the 

emergence of cooperation in finite systems see e.g. Joyce et al. (2006).  

 

In chapter 6 we also investigate various selection mechanisms (i.e. algorithms that 

determine how the population composition varies as a function of the payoffs 

obtained by each individual). This is another area of research where a substantial 

amount of work has been conducted in the last few years. In a recent paper, 

Traulsen et al. (2006) develop a framework within which one can explore various 

intensities of selection, i.e. different ways in which payoffs relate to fitness (where 

fitness is the function that determines the potential to reproduce). This selection 

framework makes use of the Fermi distribution function from statistical 

mechanics to control the balance between selection and random drift in finite 

populations. Using this function, Traulsen et al. (2006) explore different 

intensities of selection –ranging from neutral, random drift, up to the extreme 
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limit of cultural imitation dynamics– in the three 2-player 2-strategy social 

dilemma games (these are explained in detail in section 3.1). Traulsen et al. 

(2006) are able to calculate the fixation probabilities of different strategies, and 

they also use stochastic approximation theory to relate their results on finite 

populations to those obtained with infinite populations. 

 

An assumption that –to our knowledge– has not been investigated in depth in 

evolutionary stochastic finite systems is the one relating to the properties of the 

set of strategies that players are allowed to select. In chapter 6 of this thesis we 

show that this assumption may have wider implications than one may initially 

suspect. 

 

There are many other ways in which several authors have addressed some of the 

limitations of EGT outlined above. Unfortunately (but probably inevitably), the 

study of the implications of various assumptions made in mainstream EGT is 

being undertaken in a somewhat disorganised fashion. This inconvenience is 

probably a consequence of the dynamism of this field, and it will hopefully be 

corrected in time through the creation of general frameworks that facilitate 

rigorous and transparent comparisons between different models and the results 

obtained with them. Chapter 6 of this thesis is meant to be a step in this direction, 

by providing a single coherent framework within which results obtained from 

different stochastic finite models can be contrasted and compared. 

2.4. Learning game theory 
Like evolutionary game theory, learning game theory (LGT) abandons the 

demanding assumptions of classical game theory on players’ rationality and 

beliefs. However, unlike evolutionary game theory –where players are often 

assumed to be pre-programmed to play a fixed strategy–, LGT assumes that 

players are able to learn over time about the game and the behaviour of others 

(through e.g. reinforcement, imitation or belief updating), and this learning 

process is explicitly modelled (Vega-Redondo, 2003, pg. 398). This distinction 

means that the level at which dynamic processes are defined in EGT and LGT is 

fundamentally different (Fudenberg and Levine, 1998). Models in EGT are 

aggregate in the sense that they describe the aggregate behaviour of a population 
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of players through various generations; the population is subject to evolutionary 

pressures (and therefore the population adapts), but the individual components of 

the population have a predefined fixed behaviour. On the other hand, models in 

LGT comprise players who individually adapt through learning, and it is this 

learning process that is formally described. Models in LGT explicitly represent 

the learning processes that each individual player carries out, and the dynamics 

that are generated at the aggregate level (which are most often stochastic and non-

regular) emerge out of the strategic interactions among the players.  

 

Another fundamental difference between LGT and EGT relates to the relationship 

between the number of players in the game and the number of players in the 

population. Models in LGT tend to focus on one very small population of n 

players (most often n = 2), who play an n-player game (all individuals in the 

population play the game at once). This is in stark contrast with EGT models, 

where individuals within a large (usually infinite) population are drawn to play a 

2-player game. As explained in section 2.3.1, this distinction can have very 

important implications.  

 

Despite these differences, theoretical work linking results from EGT and LGT 

seems to indicate that we may be close to a point where the integration of the two 

approaches is within reach (Weibull, 1998). This is a question that is further 

discussed in section 7.4. 

 

Interestingly, there seem to be two fundamentally different motivations to study 

learning models in the LGT literature. One is mainly concerned with identifying 

learning algorithms that will lead to NE or, ideally, to refinements of NE. The 

following quote by Vega-Redondo nicely summarises this motivation: “In 

particular, our concern is to identify different classes of games in which the 

corresponding learning processes bring about long-run convergence to some Nash 

equilibrium. As we shall see, many of the proposed models fare reasonably well 

for certain games but induce quite unsatisfactory performance for some others.” 

[our emphasis] (Vega-Redondo, 2003, pg. 398). 
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This thesis follows another motivation: we are mainly concerned with identifying 

the strategic implications of decision-making algorithms that have received 

support from cognitive science research. Work following this second rationale has 

sometimes been labelled “cognitive game theory” (CogGT) in the literature (e.g. 

Flache and Macy, 2002). Nowadays, an increasing number of researches use 

CogGT to investigate animal –often human– behaviour in strategic contexts using 

models that seem more plausible than those deriving from classical game theory. 

Thus, CogGT models are often used to identify learning mechanisms that will 

lead to patterns of behaviour observed in real-world interactions (and these 

patterns often do not correspond to NE). The following summarises some features 

that characterise the way players are modelled in CogGT (Flache and Macy, 2002; 

Macy and Flache, 2002), in contrast with classical game theory: 

• Players base their decisions on experience of past events as opposed to 

logical deductions about the future. This inductive approach requires fewer 

assumptions about other players and may be more adequate to model 

animal (including human) behaviour. Since inferences about other players’ 

strategies –or about future payoffs– is made in the light of the history of 

the game, they can only lead to probable −rather than necessarily true− 

conclusions (even if the evidence used is accurate).  

• Players have feedback on their actions; otherwise learning cannot occur. 

Learning takes many forms, depending on the available feedback, the 

available knowledge, and the way these are used to modify behaviour.  

• The fact that players learn from experience means that they often cannot 

undertake an optimal behaviour (since inferences about other players’ 

behaviour cannot be guaranteed to be true). An optimal approach requires 

knowledge that sometimes has to be inferred from experience. In the 

process of acquiring the necessary knowledge, suboptimal behaviour can 

occur as a result of exploring different actions or having drawn imperfect 

conclusions from experience. When modelling players who learn from 

experience, it often seems reasonable to assume that they satisfice rather 

than optimise. The concept of ‘satisficing’ was introduced by Simon 

(1957) to indicate that agents often seek for a solution to a problem until 

they have found one which is ‘good enough’, rather than persisting in the 

hope of finding an optimal solution (which could be nonexistent, 
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incalculable, or unidentifiable). The ‘good enough’ solution is usually 

defined by setting a certain aspiration threshold.  

 

The distinction between the two different motivations outlined above becomes 

clear when one considers social dilemmas. In most single-stage social dilemma 

games, the cooperative strategy is dominated (i.e. it cannot lead to NE); however 

empirical studies have generally found that, while it is not easy to establish 

cooperation, levels of cooperation tend to be higher than would be expected if the 

assumptions made in CGT held true. Thus, when studying social dilemmas, 

researchers in LGT following the “NE motivation” would presumably consider 

models leading to cooperative solutions generally unsatisfactory. In stark contrast, 

in the context of social dilemmas, CogGT has been mainly concerned with 

identifying a set of model-independent learning principles that are necessary and 

sufficient to generate cooperative solutions (Flache and Macy, 2002). 

Interestingly –if unsurprisingly–, it seems that researchers more inclined towards 

CogGT tend to use computer simulation (instead of mathematical analysis) 

relatively more than those researchers following the “NE motivation”.  

2.4.1. Different learning algorithms 
As mentioned above, the process of learning can take many different forms, 

depending on the available knowledge, the available feedback, and the way these 

are used to modify behaviour. The assumptions made in these regards give rise to 

different models of learning. In most models of LGT, players use the history of 

the game to decide what action to take. In the simplest models (e.g. reinforcement 

learning) this link between acquired information and action is direct (e.g. in a 

stimulus-response fashion); in more sophisticated models players use the history 

of the game to form expectations about the other players’ behaviour, and they then 

react optimally to these inferred expectations. Following Vega-Redondo (2003, 

chapter 11) we briefly present here some of the most studied learning models in 

ascending order of sophistication, according to the amount of information that 

players use and their computational capabilities. 
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Reinforcement learning 
Reinforcement learning models will be discussed at length in section 4.1. Let us 

say for now that they are arguably the simplest family of learning algorithms 

investigated in LGT. Reinforcement learning is also one of the most widespread 

adaptation mechanisms in nature. Reinforcement learners use their experience to 

choose or avoid certain actions based on their immediate consequences. Actions 

that led to satisfactory outcomes (i.e. outcomes that met or exceeded aspirations) 

in the past tend to be repeated in the future, whereas choices that led to 

unsatisfactory experiences are avoided. In general, reinforcement learners do not 

use more information than the immediately received payoff, which is used to 

adjust the probability of the conducted action accordingly. The specific details of 

how this general principle is implemented in different models can lead to 

substantially different dynamics, as explained in section 4.1. 

Static perceptions; better and best (myopic) response 
In this more sophisticated family of learning models, each player is assumed to 

know not only the payoff she receives in each possible outcome of the game, but 

also the actions that every player selected at a certain time t. When making her 

decision for time (t + 1) every player assumes that every other player will keep 

her strategy unchanged (i.e. static perception of the environment); then, each 

individual player, working under such assumption and knowing the payoff 

structure of the game in what pertains to her own payoff, can identify the set of 

strategies that will lead to an improvement in her current payoff (if possible). In 

better-response models, one of these payoff-improving strategies is selected at 

random; in best-response models, only those strategies that give the highest payoff 

given the prevailing assumptions are considered for selection. In these models 

players assume that their environment is static and deterministic, and respond to it 

in a myopic fashion, i.e. ignoring the implications of current choices on future 

choices and payoffs. Vega-Redondo (Vega-Redondo, 2003, pp. 415-420) 

summarises several results for this type of learning algorithm. 

Fictitious play 
Fictitious play models were first proposed by Brown (1951). Fudenberg and 

Levine (1998) provide a recent and comprehensive account of this family of 
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models. As in best (myopic) response models, players in fictitious play (FP) 

models are assumed to have a certain model of the situation and decide optimally 

on the basis of it. The higher level of sophistication introduced in FP models 

concerns the (still stationary) model of the environment that players hold. FP 

players assume that the mixed strategy played by every other player at a certain 

time is equal to the frequency with which they have selected each of their 

available actions up until that moment. Thus, instead of considering the actions 

taken by every other player only in the immediately preceding time-step (as in the 

models explained in the previous section), they implicitly take into account the 

full history of the game. After forming her beliefs about every other player’s 

strategy, a FP player (myopically) responds optimally to them.  

 

In 2-player games, the belief sequence induced by FP is known to converge to a 

profile that defines a Nash equilibrium. This result, however, may be somewhat 

misleading, as it does not imply that players will play the strategy profile induced 

by such a sequence of beliefs in an uncorrelated fashion (Fudenberg and Kreps, 

1993), randomising their decisions independently from each other as the definition 

of a Nash equilibrium requires. As an example, imagine that the belief sequence 

in a 2x2 game converges to a strategy profile (i.e. an assignment of frequencies to 

all the strategies available to a player) where fictitious player 1 selects action A1 

with frequency 1/3 (and action B1 with frequency 2/3) and fictitious player 2 

selects action A2 with frequency 1/3 (and action B2 with frequency 2/3). The 

mathematical result mentioned above guarantees that there is a Nash equilibrium 

with the strategy profile FP converges on. This would seem to suggest that the 

pattern of play in fictitious play will be the same as the pattern of play induced by 

a Nash equilibrium, but this is not necessarily the case. Thus, in our example, the 

Nash equilibrium in mixed strategies would imply that any outcome has a positive 

probability of occurring (e.g. outcome [A1, B2] would occur with probability 2/9). 

On the contrary, by setting players’ initial beliefs appropriately (which are 

determined by numerical weights, one for each of the other player’s pure 

strategies) one can construct examples where player 1 selects action A1 if and 

only if player 2 selects action A2 (Fudenberg and Kreps, 1993). This, in particular, 

would imply that outcome [A1, B2] would never occur. Thus, the payoff obtained 

by each player in this latter case can be completely different from the expected 
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payoff obtained if players selected action Ai or Bi in an uncorrelated fashion. 

Therefore, each component of the belief sequence in FP must be understood as a 

marginal distribution for each player separately; the joint distribution may be very 

different from that resulting from Nash equilibrium play. 

Smooth fictitious play 
The perverse correlation effects outlined in the previous section motivated a 

stochastic version of the original fictitious play named smooth fictitious play 

(SFP, Fudenberg and Kreps, 1993). As in the original fictitious play, players in 

SFP assume that the mixed strategy played by every other player at a certain time 

is equal to the frequency with which they have selected each of their available 

actions up until that moment. In SFP models, however, players are no longer 

assumed to respond to their beliefs about the other players’ strategies in the knife-

edge fashion implied by the best-response correspondence; instead they respond 

in a continuous, differentiable way. The step-like determinism of the best-

response correspondence used in FP is replaced by a smooth-looking function that 

returns a probabilistic response to the other players’ inferred strategies in SFP. In 

SFP (as in FP), the rate of adjustment of behaviour slows down at a rate that 

permits the use of stochastic approximation theory, and this has facilitated the 

derivation of several theoretical results. In particular, SFP players’ strategies are 

guaranteed to converge to Nash equilibrium in 2x2 games (Fudenberg and Levine, 

1998). 

Rational learning 
The most sophisticated model of learning in LGT was proposed by Kalai and 

Lehrer (1993a; 1993b). Players in this model are assumed to be fully aware of the 

strategic context they are embedded in. They are also assumed to have a set of 

subjective beliefs over the behavioural strategies of the other players. Informally, 

as put by Vega-Redondo (2003, pg. 434), the only assumption made about such 

beliefs is that players cannot be “utterly surprised” by the course of the play, i.e. 

players must assign a strictly positive probability to any belief that is coherent 

with the history of the game. Finally, players are assumed to respond optimally to 

their beliefs with the objective of maximising the flow of future payoffs 

discounted at a certain rate. A detailed explanation of the (very powerful) results 
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obtained with this model seems to fall out of the scope of this brief account of 

learning models. We refer the interested reader to Vega-Redondo (2003, pp. 433-

441), who provides a brilliant account of this part of the literature, and concludes 

that “some of the assumptions underlying the rational-learning literature […] 

should be interpreted with great care”.  

 

Let us conclude this section by pointing out a common weakness of most current 

models in LGT (including those developed in this thesis): they almost invariably 

assume that every player in the game follows the same decision-making 

algorithm. This seems to be the natural first step in exploring the implications of a 

decision-making algorithm; however, it is clear that in many of these models the 

observed dynamics are very dependent on the fact that the game is played among 

“cognitive clones”. Confronting the investigated learning algorithm with other 

decision-making algorithms seems to be a promising second step in LGT studies.  

2.4.2. Assumptions in the learning models developed in this thesis 

Reinforcement learning 
Chapter 4 is an in-depth analysis of the transient and asymptotic dynamics of the 

Bush-Mosteller reinforcement learning algorithm for 2-player 2-strategy games. 

The following summarises the main assumptions made in this model in terms of 

the nature of the payoffs, the information players require and the computational 

capabilities that they have.  

• Payoffs: In this model, payoffs and aspiration thresholds are not 

interpreted as von Neumann-Morgenstern utilities (for which the 

distinction between positive and negative values is irrelevant), but as a set 

of variables measured on an interval scale that is used to calculate stimuli 

(this is explained in detail in section 4.2).  

• Information: Each player is assumed to know the range of possible actions 

available to her, and the maximum absolute difference between any payoff 

she might receive and her aspiration threshold. Players do not use any 

information regarding the other players. 
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• Memory and computational capabilities: Players are assumed to know 

their own (potentially) mixed strategy at any given time. They need to be 

able to conduct arithmetic operations.  

Case-based reasoning 
Chapter 5 is an exploration of cased-based reasoning as a decision-making 

algorithm in strategic contexts. The following summarises the main assumptions 

made in this model in terms of the nature of the payoffs, the information players 

require and the computational capabilities that they have.  

• Payoffs: In this model, payoffs can be interpreted as preferences measured 

on an ordinal scale.  

• Information: Each player is assumed to know the range of possible actions 

available to her, and her own aspiration threshold. Players do not use any 

information regarding the other players. 

• Memory and computational capabilities: For each possible state of the 

world they may perceive, players are assumed to store in memory the last 

payoff they received for each of the possible actions available to them. 

They need to be able to rank their preferences. 

2.5. Non-strictly-deductive branches of game theory  
This thesis aims to be an advancement in the field of deductive game theory. It is 

important to note that there are other branches of game theory which are not 

purely deductive; these non-strictly-deductive branches tend to use game theory as 

a framework to fit observed empirical data and understand the underlying 

mechanisms that may be producing the observed results. There is clearly a lot to 

gain from the interaction of deductive and non-deductive game theory. 

Traditionally, deductive game theory has developed almost entirely from 

introspection and theoretical concerns. Unless this is corrected in the coming 

years, deductive game theory may suffer the danger of becoming practically 

irrelevant or, in less dramatic terms, not fulfilling all its potential as a useful tool 

to analyse real-world social interactions. On the other hand, if the objective is to 

find a model that fits empirical data to a satisfactory extent, it is crucial to 

understand the behaviour of different models in detail; if one is not content with 

fitting only, but some level of understanding is also pursued, then it becomes 
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fundamental to know the implications of various cognitive mechanisms (i.e. 

assumptions) for the development of the game. Thus, it seems very clear that 

empirical studies have also a lot to gain from theoretical analyses. These issues 

will be discussed in chapter 7, but let us say for now that the work reported in this 

thesis has tried to be relevant by (a) studying the strategic implications of 

decision-making algorithms that have received empirical support from the 

cognitive sciences and (b) building frameworks to clearly identify the factors (i.e. 

types of assumption) that may have the greatest impact in the outcome of a social 

interaction (i.e. a game).  

 

There are a number of learning models that have been proposed to explain 

experimental data (see chapter 6 in Camerer, 2003), and many of them have been 

investigated in purely theoretical terms. The transition from theoretical learning 

models to non-strictly deductive branches of game theory is very smooth. Here we 

mention two: psychological game theory and behavioural game theory. 

Psychological game theory is a term coined by Colman (2003). 

 

“Psychological game theory […] overlaps behavioral game theory but 

focuses specifically on non-standard reasoning processes rather than other 

revisions of orthodox game theory such as payoff transformations. 

Psychological game theory seeks to modify the orthodox theory by 

introducing formal principles of reasoning that may help to explain 

empirical observations and widely shared intuitions that are left unexplained 

by the othodox theory” (Colman, 2003). 

 

Overlapping psychological game theory, behavioural game theory is completely 

driven by empirical (especially experimental) data, and models are assessed 

according to how well they are fitted to data. While models in cognitive game 

theory are designed to help us reflect on a certain process, behavioural game 

theory builds on models which are usually designed to represent the actual 

process.  

 

“Behavioral game theory is about what players actually do. It expands 

analytical theory by adding emotion, mistakes, limited foresight, doubts 
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about how smart others are, and learning to analytical game theory. 

Behavioral game theory is one branch of behavioral economics, an approach 

to economics which uses psychological regularity to suggest ways to 

weaken rationality assumptions and extend theory.” (Camerer, 2003, p.3) 

 

Let us finish the chapter by stating that learning models have been reported to 

outperform classical game-theoretic predictions on experimental data (see Macy, 

1995; Roth and Erev, 1995; Erev and Roth, 1998; Camerer, 2003, chapter 6). The 

empirical support of learning models in game theory will be expanded for 

reinforcement learning and case-based reasoning in the following chapters. 
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