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Abstract

Floating point arithmetic is a subject all too often ignored, yet, for agent-based models in particular, it has the potential to create

misleading results, and even to influence emergent outcomes of the model. Using a simple demonstration model, this paper
illustrates the problems that accumulated floating point errors can cause, and compares a number of techniques that might be used
to address them. We show that inexact representation of parameter values, imprecision in calculation results, and differing

implementations of mathematical expressions can significantly influence the behaviour of the model, and create issues for replicating
results, though they do not necessarily do so. None of the techniques offer a failsafe approach that can be applied in any situation,
though interval arithmetic is the most promising.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Agent-based modelling is a technique with growing
popularity that has been applied to a diverse range of
environmental applications. One of the classics is
Lansing and Kremer’s (1993) work on Balinese water
temples, establishing a pedigree for the modelling of
various water-related scenarios that has continued to the
present day, as exemplified by authors such as Feuillette
et al. (2003) and Pahl-Wostl (2005). At a more abstract
level, agent-based modelling has also been applied to
resource sharing (Rouchier et al., 2001) and common-
pool resource dilemmas (e.g. Izquierdo et al., 2004; for
a review see Gotts et al., 2003c; and see also CIRAD’s
CORMAS platform: Bousquet et al., 1998). It has been
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used to investigate trapping strategies for cowbirds
(Molothrus ater) (Harper et al., 2002) and to study
forestry processes in Indiana (Hoffmann et al., 2002).
Hare and Deadman (2004) and Bousquet and Le Page
(2004) review various agent-based models in environ-
mental and ecosystem management. The issue of
numerics in such models has, however, not been covered
in any great depth.

Floating point arithmetic is the standard way to
represent and work with non-integer numbers in a digital
computer. It is designed to create the illusion of working
with real numbers in a machine that can only strictly
work with a finite set of numbers. Some programming
languages (FORTRAN, for example) use the real key-
word to declare floating point variables. Thinking of
floating point numbers as real numbers, however, is
incorrect, and we show here that the differences have the
potential to create seriously misleading results in
research using agent-based models.

Rather than thinking of floating point numbers as
reals, it is better to regard them as the product of an
integer and an integer power of an integer base e
a subset of rational numbers. For example, the nor-
malised IEEE 754 single precision floating point
numbers (IEEE, 1985) can be expressed as the product
of a 24 bit integer and a power of two in the range �149
to C104 inclusive. Single precision IEEE 754 floating
point numbers give between 6 and 9 significant decimal
digits of accuracy, and double precision 15e17 signif-
icant decimal digits of accuracy (Sun Microsystems,
2001, p. 27).

One might argue that few models require as much as
15 significant figures of accuracy e after all, particularly
in the case of agent-based models of social systems, it is
unlikely that any measured parameter used as input to
the model will have that level of accuracy. However, the
agents in such models typically exhibit highly nonlinear
behaviour, in that their course of action can depend on
comparing variable values with precise thresholds. The
behaviour of the model could depend on these values
being calculated and compared accurately to ensure that
the correct action is always selected.

While such sensitive dependence on correct calcu-
lations may be particularly important in agent-based
modelling e because real-world decision-makers fre-
quently choose between small sets of discrete alterna-
tives with very different consequences e it may certainly
occur in models of other kinds. An obvious example is
mathematical models of chaotic systems, such as
Lorenz’s work with weather forecasting (Gleick, 1988,
chapter 1), in which radically different behaviour was
observed when starting a run half way through using
parameters with three significant figures from a printout
instead of the six stored in the computer’s memory. This
is a good analogy for what is happening in every
calculation using floating point arithmetic.
Many programmers are already aware of some of the
issues with floating point numbers, though as Fernandez
et al. (2003) point out, ‘‘floating point representation still
remains shrouded in mystery by the average computa-
tional science student, and only well understood by
experts’’. Not testing for equality of floating point
numbers is a commonly-taught ‘‘best practice’’ heuristic
(Knuth, 1998, p. 233), and some compilers feature
warning options to check for this (e.g. -Wfloat-equal in
GNU’s gcc (Stallman, 2001)). Where there are concerns
about floating point accuracy, particularly in the use of
comparison operators, another heuristic is to use small
constants added to one or other of the terms to allow for
the possibility of some loss of accuracy in floating point
calculations. Neither of these heuristics, however, is
sufficient to guarantee that an agent-based model using
floating point numbers will be free from unintended
effects arising purely from floating point arithmetic.

Edmonds and Hales (2003) have shown the potential
for authors to draw the wrong conclusion from their
models because of implementation-specific artefacts,
and recommend that models be reimplemented to check
results. They refer, however, to the complex and
potentially ambiguous process of translating a model
described in natural language into a computer program.
Issues with floating point numbers occur at a different
level. Even if a reimplemented model confirms the
results of the original, both models could be reporting
the wrong results because of accumulated errors arising
from computations based on parameters that are not
exactly representable using floating point numbers.

As will be shown below, many of the workarounds
used in the field to try and cope with or avoid floating
point errors are not safe, and thus may create a false
sense of security. However, it will also be shown that the
IEEE 754 standard stipulates facilities that, if properly
used, do permit certainty that a model has not incurred
floating point errors that could cause agents to act
inappropriately. This places somewhat less of a burden
on programmers than infinite accuracy e they need only
familiarise themselves with the functions provided by
any conforming platform to access these facilities.
However, we downloaded 10 publicly available agent-
based models1 written in C or Objective-C, and though
all of them included either single or double precision
floating point variables, none included the header file

1 Arborgames (ftp://ftp.swarm.org/pub/swarm/apps/objc/contrib/

arborgames-2.1.141-Swarm2.1.141.tar.gz), Biofilm and Colony

(http://www.theobio.uni-bonn.de/people/jan_kreft/bacsim.html), The

Artificial Stock Market in Swarm (http://prdownloads.sourceforge.

net/artstkmkt/), Echo (http://www.santafe.edu/projects/echo/), MAG

(http://alife.tuke.sk/projekty/mag_html/mag_intro.html), SCL

(http://www.eeng.dcu.ie/~mcmullin/), SLUCE (http://www.cscs.umich.

edu/research/projects/sluce/), Tierra (http://www.isd.atr.co.jp/

~ray/tierra/) and Village (http://www.santafe.edu/projects/swarm/users/

Pages/Village/village.html).

http://www.macaulay.ac.uk/fearlus/floating-point/charity-world/,
http://www.macaulay.ac.uk/fearlus/floating-point/charity-world/,
http://docs.sun.com/db/doc/806-7996
http://www.sonic.net/~jddarcy/Borneo/borneo.pdf.
http://www.sonic.net/~jddarcy/Borneo/borneo.pdf.
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http://java.sun.com/docs/books/jls/index.html
http://www.uni-koblenz.de/~kgt/ESSA/ESSA1/proceedings.htm
http://www.uni-koblenz.de/~kgt/ESSA/ESSA1/proceedings.htm
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html.
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html.
http://jasss.soc.surrey.ac.uk/7/3/1.html
http://jasss.soc.surrey.ac.uk/7/3/1.html
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ieeefp.h needed to access the functions. It seems,
therefore, that programmers seldom make use of the
error detection and rounding functions e reflected
perhaps in the fact that both the SmallTalk platform
on which SDML (Moss et al., 1998) is built and Java
make no direct provision for these facilities (Gosling
et al., 2000); the latter having been heavily criticised by
floating point experts (Kahan and Darcy, 2001). For
agent-based modellers this is bound to be contentious,
since three popular agent-based modelling libraries,
Ascape (Parker, 1998), Repast (Collier, 2000), and
Mason (Luke et al., 2003) are Java-based, and Swarm
(Langton et al., 1995), though it still has an Objective-C
core, also provides a Java interface. That said, there are
ways of detecting imprecision errors and implementing
interval arithmetic indirectly in Java (Darcy, 2003, pers.
comm.).

Whilst authors such as Fox (1971), as highlighted by
Higham (2002, p. 31), estimate that ‘‘about 80 per cent
of all the results printed from the computer are in error
to a much greater extent than the user would believe’’,
Winkler (2003) cites Lawson and Hanson (1995) as
claiming that measurement errors are more significant
than floating point rounding errors. Agent-based
models, however, are sometimes sufficiently abstract in
their design that their parameters and input data cannot
meaningfully be supplied from real-world measured
data. Examples include Epstein and Axtell’s SugarScape
(1996), the Artificial Stock Market (LeBaron et al.,
1999; Johnson, 2002), and FEARLUS, an agent-based
model of land use change (Polhill et al., 2001; Gotts
et al., 2003b). We have shown separately how floating
point errors affect the behaviour of the last two (Polhill
et al., 2005). McCullough and Vinod (1999) in a review
of numerical issues in econometric software, argue that
since econometric data are known to only a few decimal
places, it is certainly not worth reporting many decimal
places in the output from a model, but intermediate
calculations should still be done with as many digits as
possible (p. 638).

The ensuing text shows by illustration that developers
of agent-based modelling systems need to be aware of the
issues arising from errors in floating point arithmetic, and
compares some ideas for dealing with them. After a brief
introduction to floating point arithmetic in Section 1.1,
Section 2.1 introduces the simple model that is used to
illustrate the potential for floating point arithmetic to
have a significant impact on model behaviour. In Section
2.2, demonstrations will be given of how floating point
arithmetic can cause problems through imprecise repre-
sentation of parameters, imprecise calculations, and in
replication or reimplementation of models from mathe-
matical descriptions. Section 2.3 gives details of some of
the techniques applied in the programming community
or recommended by academics for addressing issues
arising from floating point errors, and Section 2.4 shows,
through particular parameterisations of the demonstra-
tor model, how those techniques can fail. Section 2.5
describes the software used to conduct the comparison of
the techniques with the demonstrator model. Section 3
gives the results of the comparison, and Section 4
comments on the results and the implications for
programming agent-based models. Section 5 presents
the conclusions.

1.1. What every agent-based modeller should not
(ideally) have to know about floating
point arithmetic

This section will briefly outline how floating point
numbers are represented in a computer, and how even
apparently simple calculations can introduce errors. The
discussion focuses on floating point arithmetic conform-
ing to the IEEE 754 standard (IEEE, 1985; Goldberg,
1991), to which most modern computers adhere, but will
use 8-bit numbers for simplicity rather than the 32 (for
single) and 64 (for double) stipulated by the standard.

In what follows, the following notation is used to
distinguish operations using floating point arithmetic
and mathematical operations as they are conventionally
understood:

[expr] fd The closest representable number to the
result of expression expr in the current floating point
environment.

In a computer, a floating point number consists of
three parts: one sign bit s, x exponent bits e, and p� 1
bits f used to represent the significand2, with x! p and
where e and f are bit-strings. In IEEE 754 single
precision, xZ 8 and pZ 24, and in double precision,
xZ 11 and pZ 53. Here, we will use, say, xZ 3 and
pZ 5. These bit-strings are (for the most part) used to
construct a number of the form:

nZ ð � 1Þs2E F

where n is the number, E is the exponent derived from e,
and F the base 2 p-bit significand derived from f, with
the binary point immediately after the first digit.

For the majority of numbers, the exponent bits e are
translated into the actual exponent E using an offset b,
where EZ e� b. In single precision, bZ 127, double
bZ 1023, and for the examples here, bZ 3. The
translation of the significand is based on the concept
of normalised floating point numbers: those for which
the first digit of F (which appears immediately before the
binary point) is non-zero. Normalised numbers have the
advantage that each number is represented by a unique

2 The word ‘significand’ supersedes ‘mantissa’ to refer to this part

of a floating point number (Goldberg, 1991).
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value of E and F, and hence of their corresponding bit-
strings e and f. In binary, if a digit is non-zero, then it
must be 1, and hence there is no need to include it in the
format. The leading 1 in F becomes a ‘hidden bit’ that is
not stored in the bit-string f in the computer’s memory.
For example, in the 8-bit format, 0.75 would be stored
as 0 010 1000: s is then 0, e is 010 (2 in decimal) and f
is 1000, meaning EZ 2e3, F is 1.1000 or 1.5 in decimal,
and n is C1! 2�1! 1.5; whilst 1 110 1111 would
represent �1! 2(6e3)! (1C 15/16)Z�15.5.

Using normalised numbers to represent F precludes
the representation of zero. It would also be an advantage
to allow denormalised numbers for very small fractions,
giving a finer resolution around zero than possible with
normalised numbers given the bit-width restrictions on
the exponent. The IEEE 754 standard allows this: if all
the e bits are 0, n is taken to be (�1)s 2(1�b) 0.f. To
complicate things further, the IEEE 754 uses the case
where all the e bits are 1 to allow the representation of
non-numbers, specifically: positive and negative infinity,
and a series of quantities called ‘Not-a-Number’ (short-
ened to ‘NaN’). It also allows the distinction between
positive and negative zero. These measures allow a pro-
gram to perform calculations such as �1/0 and

ffiffiffiffiffiffiffiffiffiffiffiffi
ð � 1Þ

p
without crashing. The non-numerical aspects of floating
point numbers will not be pursued further here.

The set of positive non-zero numbers that can be
represented using the 8-bit IEEE 754-like floating point
format is illustrated in Fig. 1. Although using only 8 bits
exaggerates the sparseness with which floating point
numbers cover the set of real numbers, the point is
nevertheless made that even double precision numbers
cannot and should not be treated as though they are real
numbers. What is shared between the 8-bit implementa-
tion and the single and double precision IEEE 754
representations is that there is no exact representation of
simple-looking base-10 numbers such as 0.1 (Wallis,
1990a). Indeed of the nine base-10 numbers 0.1, 0.2,.,
0.9, only 0.5 is exactly representable.

Clearly, since the coverage of the set of real numbers is
limited, many arithmetic operations with exactly repre-
sentable operands will result in numbers that do not
belong to the set of numbers that can be represented
using the floating point format. For example, in the 8-bit
format, if the exponent isC3, the last digit of f represents

Fig. 1. The set of positive numbers representable using the illustrative

8-bit IEEE 754-like format shown on a logarithmic scale.
0.5, and hence, although 8.0 and 0.25 are both members
of the set N8 of numbers representable using this format,
their sum is not. The IEEE standard stipulates that all
arithmetic operations should be computed as though the
precision is infinite and the result rounded to the nearest
representable number. This is termed exact rounding
(Goldberg, 1991). Where two such numbers are equally
near, the option with 0 as the least significant bit is
selected. In the 8-bit format, therefore, [8C 0.25] fZ 8,
since 8.5 is represented using 0 110 0001, and 8.0 using
0 110 0000. Fig. 2 shows the proportion of results for
each arithmetic operator involving two members of N8

with an exact result appearing in N8. Unsurprisingly,
numbers with more zeros in the least significant bits of
the significand are, on the whole, more likely to be
operands in exactly representable computations, and
plus and minus are more likely to result in a member of
N8 than multiply or divide.

There are thus two potential sources of error in
a computation of x5 yZ z, where x, y and z are real
numbers and 5 stands for any of the arithmetic
operators: plus, minus, multiply, and divide. The first
potential source of error lies in the conversion of x and y
to their floating point representations [x] f and [y] f. The
second potential source of error lies in the conversion of
the result of [x] f5 [y] fZ z# to its floating point
representation [z#] fZ [ [x] f5 [y] f ] f. This is represented
schematically in Fig. 3. The IEEE 754 standard
stipulates that (in the default rounding mode) the result
of the calculation should be the nearest representable
floating point number to z#, which is different from
stipulating the nearest representable number to z.
However, if xZ [x] f and yZ [y] f, then zZ z#, and
[z#] f will be the closest floating point number to z.

Thus far, we have been dealing only with a single
floating point calculation, which could be just one part
of an expression to compute a single value for an agent.
The result of that part, [z#] f then becomes an operand in
another part of the expression, generating a new,
possibly unrepresentable, result. Thus, even when 15
significant figures of accuracy are guaranteed for a single
operation, that accuracy may not be carried forward to
the result of evaluating an expression. In discrete-event
models, if a parameter describing part of an agent’s state
at time T� 1 is used as an argument to computing the
state at time T, errors can accumulate over time. For
example, the upper bound of the relative error of the
sum of a series of numbers is proportional to the length
of the series (Higham, 2002, p. 82). Hence, although 15
significant figures of accuracy may seem more than
sufficient, it is sometimes not enough.

A further potential source of error lies in the hard-
ware and software platform on which the calculation is
taking place. Axelrod (1997) has reported problems with
floating point arithmetic when reimplementing models
on different platforms. The bug in the Intel Pentium
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Fig. 2. Graphs showing, for the simple 8-bit floating point representation discussed in the text, the proportion of exactly computed results of

y5 number, where number is a positive member of the set of numbers represented using the 8-bit implementation, y iterates over all members of this

set, and 5 stands for any of the basic arithmetic operators. Note that the graphs for C and � are the same, as are those for ! and /.
floating point processor is a well-known (Coe et al.,
1995), but extreme, example of this. Another example is
porting from IEEE 754 to non-IEEE 754 compliant
platforms, which creates potential for the same program

x

y

[ ]fx

[ ]fy

zz′[ ]fz′

Fig. 3. Schematic representation of stages in a floating point

calculation of two real operands x and y to the floating point result

[z#] f. The area with a light grey background indicates real numbers not

representable using the floating point implementation (possibly

including the real result z), whilst the set with the dark grey

background shows the subset of real numbers that are exactly

representable. Dotted lines show conversion from a non-representable

to a representable number, and hence a potential source of error,

whilst the solid lines indicate the operation.
to deliver different results (Wallis, 1990b). However, it is
also possible for two IEEE 754 compliant platforms to
generate different output from the same program
(Anon., 2001, p. 238). This is partly because the
standard does not completely specify the accuracy of
conversion between binary and decimal formats, and
partly because of potential ambiguity in the precision of
non-programmer-specified destinations for results of
floating point operations, such as intermediate results in
sub-expressions. Further differences can also be caused
on the same platform through using different compiler
optimisation settings.

2. Method

The rest of this paper will focus on a simple agent-
based model of wealth redistribution called Charity-
World, designed specifically for the purpose of illustrat-
ing problems with floating point numbers and comparing
potential solutions. After introducing CharityWorld,
illustrations of three issues with floating point arithmetic
are provided, using particular parameterisations of the
model:

(i) The effect of converting parameters from decimal to
binary.
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(ii) The effect of imprecision in calculations even when
parameters are exactly representable.

(iii) The effect of rewriting expressions in ways that are
equivalent in real arithmetic, but not (necessarily) in
floating point.

These illustrations are used as a basis for comparing
a number of techniques for avoiding problems with
floating point arithmetic that exist either as folklore
among programmers, or are recommended by academ-
ics studying floating point arithmetic. From an un-
derstanding of the techniques, it is possible to devise
specific counter-example parameterisations of Charity-
World, designed to highlight any weaknesses. These
counter-examples are tried with other techniques, to
check whether there are corresponding issues. The com-
parison thus consists of the results of running Charity-
World using each technique on each illustration and
counter-example parameterisation. The Software sec-
tion (2.5) describes the software used to make this
comparison possible.

2.1. Introduction to CharityWorld

CharityWorld is a model of wealth redistribution, in
which a number of spatially embedded agents begin with
a highly unequal distribution of wealth. This unequal
distribution is then redistributed by the agents using
rules determining when, to whom, and how much
money is given. In this model, wealthy agents (‘donors’)
donate money to their less wealthy neighbours without
prompting. Two rules are used to control the exchange
of wealth: awareness, which determines whether an
agent will donate any money; and approach, which an
agent uses to find an appropriate neighbour to donate
to. The classes of agent used henceforth differ only in the
awareness and approach conditions and the calculation
of the amount exchanged. Fig. 4 shows the behaviour of
the agents.

Agents in CharityWorld are distributed on a regular
bounded rectangular grid of x! y square cells, with one
agent per cell. A cell’s neighbours are defined using the
Moore neighbourhood which, for a cell not at the edge
of the grid, consists of the eight cells sharing an edge or
a corner with it. Agents are initially assigned a wealth w0

(usually 0). To create an uneven distribution of wealth,
the agents participate in a lottery with jackpot J, for
which a single winner F is selected. Since each agent
pays J/xy in wealth, F has a wealth of w0C J(xy�1)/xy
after the lottery and the other xy�1 agents have wealth
w0�J/xy.

Scheduling in the model is dynamic in that agents put
themselves on a schedule-list of potential donors
depending on whether their supply-awareness-condition
applies. Immediately after the lottery has taken place,
each agent is asked to determine whether it is to be put
on the schedule-list. This completes the initialisation
process.

After initialisation, an agent is selected from the
schedule-list at random and asked to perform a cycle of
redistribution (Fig. 4a). The selected agent considers all
its neighbours in ascending order of wealth, and gives
each a certain amount of wealth g if both the awareness-
condition and the approach-condition are satisfied. After
the wealth exchange is completed, each of the agents

Fig. 4. UML Activity Diagrams (Booch et al., 1999) for agent

behaviour in CharityWorld. Italicised activities are those that differ

among Agent classes. (a) Donation process. (b) Process for reschedul-

ing an agent.
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involved in the cycle of redistribution is put onto the
schedule-list if its supply-awareness-condition applies.
The process of determining whether an agent should
put itself on the schedule-list is termed rescheduling
(Fig. 4b). An agent has three possible states: ‘stepping’
when it is in the process of choosing neighbours to give
wealth to, ‘waiting’ when it is on the schedule-list, and
‘inactive’ otherwise.

The model then repeats the following step until
the schedule-list is empty (i.e. all agents are inactive):
if the schedule-list is non-empty, then select an agent
from the schedule-list at random and ask it to perform
one cycle of wealth redistribution (Fig. 4). When
the schedule-list is empty, the model is said to have
terminated. If, after termination, all agents have equal
wealth, it has converged.

A CharityWorld model is therefore determined by the
following parameters:

� The size of the environment, x and y.
� The size of the jackpot, J.
� The initial wealth, w0.
� The class of agent to use (all agents in a model
belong to the same class).

� The supply parameter, G. This is used by the agents
to determine the amount g of wealth donated when
the supply-approach-condition is satisfied.

For example, consider a class of agents that will be
referred to as Simple-Supply-Agents (SSA). The supply-
awareness-condition, for an SSA A with a neighbour-
hood consisting of the set N(A) of SSAs is:

SSA-supply-awareness-condition ðAÞ
5ð#NðAÞC1ÞwA O

X
a˛NðAÞWfAg

wa ð1Þ

using #S to represent the cardinality of set S, and wi to
represent the wealth of SSA i. Similarly, the supply-
approach-condition for A and one of its neighbours
n(A) is given in Eq. (2):

SSA-supply-approach-condition ðA;nðAÞÞ
5ð#NðAÞC1ÞwnðAÞ !

X
a˛NðAÞWfAg

wa ð2Þ

Essentially, an SSA will donate if its wealth is greater
than its local average wealth. Recipient SSAs have
wealth less than the local average of the donating SSA.
The amount exchanged, gZG. Simulations involving
SSAs will eventually converge with all SSAs having
wealth w0 if J/GZ jxy, where j is a positive integer. (A
proof of this is in Appendix 1.) Thus for any G, there
exists a jackpot for which convergence is guaranteed; in
particular, if Jh jxyG then convergence occurs for any
j˛N and G˛RC.

2.2. Illustrations

2.2.1. Floating point representation of parameters
This section demonstrates how the binary floating

point representation of decimal parameters of a model
can affect the outcome in CharityWorld. Imprecision in
parameters refers specifically to using parameters that
do not have an exact representation in the floating point
implementation used. As already mentioned, of the
numbers 0.1i from iZ 1, 2, ., 9, only 0.5 is exactly
representable. More generally, the only exactly repre-
sentable base 10 floating point numbers are those
representing irreducible fractions with a power of two
denominator. Considering the numbers between 0 and 1
exclusive, n decimal places admit a power of two deno-
minator equal to at most 2n, since the highest power of
two factor of 10n is 2n. There will then be 2n� 1 exactly
representable numbers between 0 and 1 exclusive out of
10n� 1 base 10 floating point numbers with n significant
figures. This fraction decreases with increasing n.

Single precision floating point numbers guarantee 6
significant decimal digits of precision, and thus can
exactly represent 26� 1Z 63 of the 999999 base 10
floating point numbers 0.000001i (iZ 1, ., 999999)
between 0 and 1 exclusive. It would be a mistake to
think that double precision can exactly represent a
greater proportion of these numbers, but it does achieve
a reduction in the error of representation, expressed as
the absolute difference between the base 10 number and
the base 2 number used to represent it.

Imprecision in parameters has the greatest potential
to introduce errors in the model, since the model
is making calculations using inexact values from the
start of the run. It is not necessarily the case, however,
that imprecise parameters will lead to an incorrect
result.

2.2.1.1. Illustration 1. Consider a model containing
9 SSAs on a 3! 3 grid with initial wealth w0Z 0. The
agent in the centre location (2, 2) receives the
jackpot JZ 9jG, where j is a positive integer, meaning
it has wealth 8jG (after paying the price for partici-
pating in the lottery) whilst the other eight agents
have wealth �jG. Throughout the run, the agent at
(2, 2) will be the only donor according to the SSA-
supply-awareness-condition, and there should be j cycles
to convergence in each of which it donates G of wealth
to each of its neighbours. At convergence, each agent
should have wealth 0. This result should be independent
of the supply parameter G.

Implementing this model in a computer, however,
convergence occurs when G is 0.5, for which the model
behaves as predicted, but if G is 0.4, the model does not
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converge for any j. For example, if jZ 1 and G is 0.4,
then the agent at (2, 2) receives

½½½½½½½½0:4�fC½0:4�f�fC½0:4�f�fC½0:4�f�fC½0:4�f�f

C½0:4�f�fC½0:4�f�fC½0:4�f�f

initially. This sum (using double precision) is 3.19.14.
9733546474. instead of 3.2, where x.n.x represents
digit x repeated n times. The agent at (2, 2) then gives
[G] f to each of its eight neighbours, and [0.4] f is sub-
tracted eight times from the initial wealth sum, leaving it
with a wealth of 0.0.15.01110223024625., and the
neighbours each with 0.0. The agent at (2, 2) now has
greater than average wealth, and it thus donates [0.4] f to
one of its neighbours, leaving it with �0.39.15.
911182158. in wealth and the neighbour with [0.4] f.
As the agent at (2, 2) now has negative wealth, the
neighbour will donate [0.4] f back, returning the state of
play to what it was two donations previously (Fig. 5).

Although 0.5Z [0.5] f and 0.4s [0.4] f, the problem is
not due simply to the fact that 0.4 is not exactly
representable, but to the specific nature of its inexact
representation and how this interacts with the require-
ments of the calculations in the model. When jZ 1, the
wealth of the winning agent in the 3! 3 environment is
the result of summing the ticket price ([[J] f/9] f) eight
times. If the ticket price could be added eight times to
the winning agent’s initial wealth and then G subtracted
eight times to yield the initial wealth again, then the
model would converge. Whether or not this happens
depends on whether [G] fZ [[J] f/9] f, and on what effect
any floating point errors have on the series of additions
and subtractions.

Using the 100 two-decimal-place base 10 numbers
between 0.00 and 0.99 inclusive for G (with JZ 9G), we
found that 17 of them converge including the only four
for which G and/or J is exactly representable, and for all
17, [G] fZ [[J] f/9] f (the ticket price is equal to [G] f). Of the
83 that do not converge, 29 cases have [G] fs [[J] f/9] f,
and all 83 involve rounding errors during the addition
and subtraction. The 13 inexact values for G that
converge are: 0.07, 0.13, 0.14, 0.26, 0.27. 0.28, 0.51,
0.52, 0.54, 0.55, 0.56, 0.71 and 0.79, of which 0.51 and
0.55 involve rounding errors during addition and sub-
traction. Only four of the 13 inexact values that converge
with double precision also converge with single precision:
0.13, 0.26, 0.51 and 0.52. Ten other values converge with
single precision that do not converge in double precision,
meaning that there is one more convergence out of the
100 values for G in single precision than in double. From
the above, we conclude that:

� Inexact representation of parameters does not
necessarily preclude correct behaviour, but (in this
case at least) makes it less likely.

� Rounding errors in calculations do not necessarily
preclude correct behaviour, but (in this case at least)
make it less likely.

� Using extra precision does not necessarily make
correct behaviour more likely. Indeed, in this case
double precision converged less often than single!

� Parameter values that work in one floating point
precision will not necessarily work in another.
Fig. 5. UML Statechart Diagram (Booch et al., 1999) showing how a run of CharityWorld loops infinitely instead of terminating using SSAs on

a 3! 3 grid when jZ 1 and GZ 0.4 and the agent winning the jackpot is in location (2, 2) on the grid.
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Fig. 6. Sequence of output from two runs of CharityWorld using the same seed that would show exactly the same output were it not for errors in

floating point arithmetic.
The difference between runs using GZ 0.5 and
GZ 0.4 for the same j, x and y is demonstrated in
Fig. 6, using a larger environment than the 3! 3 grid
used above. Each snapshot in Fig. 6 colours each cell
using four shades of grey according to the wealth of the
agent in that cell. Dark grey cells indicate negative
wealth. White cells indicate a wealth equal to zero. The
lighter two shades of grey indicate positive wealth, the
darker of the two shades indicating wealth closer to zero.
A line is drawn between neighbouring cells if wealth was
exchanged between the two neighbours during the
preceding 500 cycles. Both runs use agents of class SSA
with initial wealth 0, xZ 16, yZ 16, jZ 4, and a jackpot
J equal to xyjG. The top run uses GZ 0.5, and by cycle
19000 all agents have zero wealth. If GZ 0.4, however
(bottom sequence), although the model behaves similarly
for the first few thousand cycles (with some differences),
it never reaches the termination state.

2.2.2. Imprecision in calculations
Even if parameters are exactly representable using

floating point numbers, errors can creep in when the result
of a calculation using the parameters is not itself exactly
representable. In some cases, extra precision can help with
this, but certain calculations using exact parameters (e.g.
2.0/3.0) are not exactly representable in binary floating
point at any precision. Once an error has occurred in
a calculation, it is possible for that error to accumulate in
successive computations involving the result. According
to Higham (2002, p. 14) poor results from imprecision in
calculations most often arise from the ‘‘insidious growth
of just a few rounding errors’’ rather than accumulation of
many millions of rounding errors. He also finds that
rounding errors can assist with the success of a computa-
tion rather than hinder it (pp. 22e24).

2.2.2.1. Illustration 2. The following example shows
imprecision in calculations causing most of the agents to
make the wrong decision. Consider a model containing
100 SSAs with initial wealth 0 on a 10! 10 grid and
jackpot, J, where J is an exactly representable number.
Immediately after the lottery, the winning SSA’s wealth
should be 0.99 J whereas the other SSAs’ wealth should
be �0.01J. There is no need to determine G, since we are
only interested in the beginning of the simulation. Fig. 7
shows the distribution of donors at the beginning of the
simulation for JZ 70, when there are 87 agents who
wrongly see themselves as donors and for JZ 700, which
shows the output in the absence of floating point errors.
Donors (those who satisfy the supply-awareness-condi-
tion) are represented in grey whereas those who do not
satisfy the supply-awareness-condition are represented in
white.

The 87 agents who wrongly see themselves as donors
are those surrounded by either 5 or 8 other agents with
the same wealth as they have [�0.7] f. They do so
because, in double precision floating point arithmetic,
the following two inequalities hold:

½6!½ � 0:7�f�fO½½½½½½ � 0:7�fC½ � 0:7�f�fC½ � 0:7�f�f

C½ � 0:7�f�fC½ � 0:7�f�fC½ � 0:7�f�f ð3Þ

Fig. 7. Distribution of donors at the beginning of the simulation from

two runs of CharityWorld (JZ 70 and for JZ 700) that would show

exactly the same distribution were it not for errors in floating point

arithmetic. Agents that see themselves as donors are coloured in grey,

other agents in white. The distribution on the right (JZ 700) shows

the output in the absence of floating point errors.
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for agents at the edge of the space, and:

½9!½ � 0:7�f�fO½½½½½½½½½ � 0:7�fC½ � 0:7�f�fC½ � 0:7�f�f

C½ � 0:7�f�fC½ � 0:7�f�fC½ � 0:7�f�fC½ � 0:7�f�f

C½ � 0:7�f�fC½ � 0:7�f�f ð4Þ

for non-edge-or-corner agents. The SSA-supply-aware-
ness-condition is therefore satisfied for these agents
when it should not be, mathematically speaking.

The agents on the corners do not see themselves as
donors because for these agents, floating point arithme-
tic behaves like conventional arithmetic sufficiently that:

½4!½ � 0:7�f�fZ½½½½ � 0:7�fC½ � 0:7�f�f
C½ � 0:7�f�fC½ � 0:7�f�f ð5Þ

Thus, in a toroidal rather than bounded environment,
since all agents would check their supply-awareness-
condition as per Eq. (4), no agents would behave
correctly as do the corner agents.

Repeating Illustration 2 for integer JZ 1,.,100, we
found that in 34 cases, either edge agents or non-edge-
or-corner agents or both satisfy their supply-awareness-
condition. All of these involved a rounding error in the
computations, and half were cases where only edge
agents satisfied their supply-awareness-condition. The
supply-awareness-condition of corner agents was not
satisfied in any case. Of the 66 cases where none of the
agents satisfied their supply-awareness-condition, all but
four involved a rounding error in one or more of the
computations involved. Just as in Illustration 1, we find
that rounding errors do not necessarily mean that the
model will behave incorrectly. For spatially-explicit
agent-based models, however, if the environment is
bounded there is the potential for errors to affect edge,
corner, and other agents differently.

2.2.2.2. Illustration 3. A special case of imprecision
occurs when a very small number is involved in a calcu-
lation whose result is an even smaller number that is
outside the set of numbers representable using the float-
ing point implementation. An example using the 8-bit
representation discussed in Section 1.1 would be dividing
the smallest denormalised number (0 000 0001Z 1/64)
by 3. In this case, the result ‘underflows’ to zero. This
problem demonstrates underflow.

This problem introduces the Portion Supply Agent
(PSA), which has the same awareness condition as the
Simple Supply Agent. Once the PSA is aware of the need
to supply, it will then donate a proportion of the
difference between its wealth and the average wealth
of its neighbours to each of its neighbours uncondition-
ally. The PSA-supply-approach-condition is therefore
always true. The amount donated g is calculated as
follows:

gZ
G

#NðAÞC1

0
B@wA �

P
a˛NðAÞ

wa

#NðAÞ

1
CA ð6Þ

The model parameter G is used as a measure of the
generosity of the donating agent. If GZ 1, and all the
neighbouring agents have equal wealth, then the
donating agent A will redistribute its wealth so that it,
and all its neighbours, have equal wealth.

In a simple simulation involving just two agents, if
GZ 1, the simulation will terminate in a single step, but
if G! 1, the simulation should never terminate. How-
ever, in a computer, using GZ 0.75 (or any 1.0OGO
0.5, but 0.75 is the simplest exactly representable such
number), the simulation does terminate after a number
of iterations, as the responding agent’s wealth under-
flows from the smallest representable number to zero.
Here, in contrast with Illustration 1, there is conver-
gence when there should not be.

McCullough and Vinod (1999) argue that underflow
is a pernicious error, since a model in which it occurs can
produce ‘‘sensible-looking answers that are completely
inaccurate’’ (p. 643). Its counterpart, overflow, which
occurs when the result of a computation is larger in
magnitude than the largest representable positive or
negative number (as appropriate), is more easily
detected on IEEE 754 compliant platforms, as they
generate the appropriately signed infinity. Any sub-
sequent addition or subtraction involving the result of
such a computation has the result Not-a-Number
according to IEEE 754, and any further computation
involving Not-a-Number has result Not-a-Number,
meaning that the occurrence of overflow is likely to
propagate forward to the final output from the model.

The most effective way to guard against underflow is
to make use of the IEEE 754 stipulated floating point
error traps, discussed further in Section 2.3.1. Higham
(2002, p. 27) also recommends watching the numbers
generated during the course of a simulation. Though
agent-based models might well be expected to produce
a vast amount of such output, too much to expect
a researcher to inspect each and every number, modern
computers have sufficient disk space to store it. The
output can then be searched automatically for very
small exponents, e.g. using a regular expression like E-

[1-9][0-9][0-9] with the Unix command grep.
Models generating small numbers that eventually result
in underflow in the manner illustrated here are restricted
in how many cycles they can be run for. Using extra
precision should extend the limit.
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2.2.3. Mathematically equivalent expressions
Floating point errors can also cause problems when

replicating the work of other authors, even if imple-
mented on the same platform. This section briefly looks
at how different implementations of what should be
mathematically equivalent results can change the
behaviour of the program.

2.2.3.1. Illustration 4. This problem focuses on a slight
variation of the SSA called the Supply-Unhappy-Agent,
or SUA. The SUA is defined by the following conditions
for an agent A and one of its neighbours, N˛nðAÞ:

SUA-supply-awareness-conditionðAÞ
5wealthðAÞOlocal-mean-wealthðAÞ ð7Þ

SUA-supply-approach-conditionðA;NÞ
5wealthðNÞ! local-mean-wealthðNÞ ð8Þ

An SUA is said to be ‘happy’ when its wealth is
greater than the mean wealth of its neighbours, and
‘unhappy’ when its wealth is less than the mean wealth
of its neighbours. The SUA will donate an amount
gZG to unhappy neighbours when it is happy.

This specification of the SUA should be enough, but
to show how it need not be, we consider four mathe-
matically equivalent ways of assessing whether the
wealth of an agent is greater or less than its local mean
wealth.

The default, and most intuitive way is to compute the
mean as it appears in most textbooks and compare it
with that of agent B to determine B’s happiness. Using
wa for the wealth of agent a, N(B) to represent the set of
neighbours of B, and n to represent the cardinality of
N(B):

wB O
1

nC1

X
a˛NðBÞWfBg

wa5happyinclusive meanðBÞ ð9Þ

Multiplying both sides of the inequality by nC 1
gives a mathematically equivalent method of determin-
ing the happiness of B (which is the same as the SSA-
supply-awareness-condition (1)):

ðnC1ÞwB O
X

a˛NðBÞWfBg
wa5happyinclusive totalðBÞ ð10Þ

The wealth of the agent B can also be taken out of the
calculation of the mean, without affecting the truth of
the inequality (mathematically speaking), as shown
below:
wB O
1

nC1

X
a˛NðBÞWfBg

wa

5wBO
1

nC1

 
wBC

X
a˛NðBÞ

wa

!

5wB

�
1� 1

nC1

�
O

1

nC1

X
a˛NðBÞ

wa

5
n

nC1
wBO

1

nC1

X
a˛NðBÞ

wa

5nwBO
X

a˛NðBÞ
wa

5wBO
1

n

X
a˛NðBÞ

wa ð11Þ

Hence, the two further variants of SUA assess their
happiness as follows:

wB O
1

n

X
a˛NðBÞ

wa5happyexclusive meanðBÞ ð12Þ

nwB O
X

a˛NðBÞ
wa5happyexclusive totalðBÞ ð13Þ

There are thus four mathematically equivalent
variants of SUA which should have the same behaviour.
Fig. 8 shows the results of using the four variants in

Fig. 8. Differences in behaviour between mathematically equivalent

variants of the same model, shown using time-series graphs of the size of

the schedule-list. The ‘Inc Mean’ line refers to Eq. (9), ‘Inc Total’ to Eq.

(10), ‘Exc Mean’ to Eq. (12) and ‘Exc Total’ to Eq. (13). The solid

diamond line shows the ‘true’ behavioure thatwhich shouldoccurwere it

not for errors in floating point arithmetic (GZ 0.5), when all variants

behave in the sameway.The other four lines show thedifferences between

the implementation variants when GZ 0.7. All runs used the same seed.
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a 10! 10 environment with initial wealth 0. Using
GZ 0.5 and a jackpot of 50, all four variants behave in
exactly the same way, with the model converging by
cycle 4300. However, when GZ 0.7 and JZ 70, each of
the four variants produces a different behaviour by cycle
1100. The greatest difference in behaviour is between the
exclusive and inclusive variants of SUA. Within these,
smaller differences appear between the total and the
mean variants.

The difference between the four differently behaving
runs and the four runs using GZ 0.5 is that 0.5 is
exactly representable whilst 0.7 is not. An effect similar
to that shown in Illustration 1 is thus occurring here.
What the differently behaving runs show is that floating
point calculations make it possible for different outputs
to be generated from different implementations of
mathematical expressions in the model design. How
far this can lead to significantly different statistical
signatures (Moss, 2001) is unknown.

2.3. Techniques

2.3.1. Detection of floating point errors
Platforms that implement IEEE 754 are required to

provide facilities that allow the programmer to inspect
various exception flags that are set when floating point
errors occur (IEEE, 1985). These functions are provided
in C in the ieeefp.h header file e fpgetsticky() and
fpsetsticky()3 being most relevant. The former function
allows the programmer to inspect the state of the flags
over all floating point operations since the flags were set
to zero using the latter function. The authors are not
aware of any such functionality being directly available
in Java, though a superset of Java called Borneo,
currently at the specification level only, does have such
a capability (Darcy, 1998).

The five errors that the IEEE standard stipulates be
detectable are:

1. Inexact result e the computation results in a number
that cannot be represented by one of the numbers
available under the given precision.

2. Underflow e the computation results in a number
that is not exactly representable and is smaller than
the smallest non-zero number representable using
normalised numbers.4

3. Overflow e the computation results in a number
larger than any representable number.5

4. Division by zero.
5. Invalid operation e e.g.

ffiffiffiffiffiffiffiffiffiffiffiffi
ð � 1Þ

p
, 0/0, 0!N, N/N

or any comparison with NaN.

3 Unix manual page fpgetround(3C).
4 For the sake of clarity, x is smaller than y iff |x| ! |y|.
5 Similarly, x is larger than y iff |x|O |y|.
A floating point error in a computation will not
necessarily lead to an incorrect decision by an agent.
Aborting the simulation as soon as an error occurs is
therefore overly cautious. An alternative is to issue
a warning in the event of a floating point error: the user
may be able to judge from the context whether the error
threatens the validity of the run. Detecting and warning
about floating point errors at least means the user can be
certain when a model run does not entail any floating
point errors, set runs that produce such errors to one side
for further inspection, and concentrate on those that do
not. Whether focusing on runs that do not produce errors
is a potential source of bias is amatter for further research.

If the software uses programming libraries that make
floating point calculations that do not have an impact
on agent decision making (e.g. a tcl/tk display), then
a perfectly valid simulation could issue a floating point
error warning. The only way to guard against this is to
surround each relevant calculation by a call to
fpsetsticky(0) beforehand to unset all the floating point
error flags and a call to fpgetsticky() afterwards to check
if any flag has been set by the calculation. This was the
approach taken in the software used.

In the results, this technique is referred to as ‘Warn’.

2.3.2. Tolerance windows
Floating point operations, whilst not strictly accu-

rate, often achieve a level of accuracy within a relatively
small tolerance, 3. Replacing the comparison operators
as shown below can prevent incorrect decisions being
made by agents:

� x
~
Oy5xO½yC3�f

� x
~
Ry5xR½y� 3�f

� x
~
!y5x!½y� 3�f

� x
~
%y5x%½yC3�f

� x~Zy5ðxR½y� 3�fÞ^ðx%½yC3�fÞ
� x

~
sy5ðx!½y� 3�fÞnðxO½yC3�fÞ

where 3 is a non-negative floating point number.
The SSA-supply-awareness-condition (1) and SSA-

supply-approach-condition (2) are then written thus:

SSA-supply-awareness-conditionðAÞ
5ð#NðAÞC1ÞwA V

X
a˛NðAÞWfAg

wa ð14Þ

SSA-supply-approach-conditionðA;nðAÞÞ
5ð#NðAÞC1ÞwnðAÞ *

X
a˛NðAÞWfAg

wa ð15Þ

Correct termination of the model is then often pos-
sible, provided a good value has been chosen for 3: high
enough to detect as equal two different numbers that
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would be equal in the absence of floating point errors,
but low enough to detect as different two numbers
that would indeed be different without such errors.
In CharityWorld, what constitutes a ‘good value’ for 3

depends on the jackpot, J.
Consider Illustration 1, for example. The parameter

settings are xZ yZ 3, with agent class SSA, and w0Z 0.
Using the GZ 0.4 case with JZ 72 and 3Z 10�11, the
model behaves in exactly the same way as when GZ 0.5,
JZ 90 and 3Z 0, converging with all agents having
wealth within the range G3 after 20 cycles. If 3Z 10�13,
however, the model does not terminate and the agents
never all have wealth within the range G3. Using
JZ 720, we need to set 3Z 10�9. For very large
JZ 72,000,000, 3Z 0.1 does not converge and correct
behaviour is achieved with 3Z 3.5.

2.3.3. Rewriting expressions to reduce
floating point errors

Some of the literature on floating point arithmetic
concerns algorithms for specific kinds of computation
with reduced floating point errors. One such algorithm of
particular relevance to CharityWorld is the Kahan
Summation Algorithm (Kahan, 1965). The Kahan Sum-
mation Algorithm reduces the error in computing the
sum of a series of numbers, by keeping track of
a correction term throughout the sum. Implementing
the Kahan Summation Algorithm when updating the
wealth of an agent in Illustration 1 can, depending on the
value of j, enable a simulation to converge that would not
otherwise do so because of floating point errors. (In the
results, this technique is referred to as ‘Kahan’.) Even
when this occurs, it is still possible that agents will make
a decision to donate when they should not do so e so
although the simulation terminates and converges, the
sequence of donations is not necessarily the same as it
would have been were it not for floating point errors.

2.3.4. Using strings
One suggestion when making comparisons is to write

floating point numbers to strings with a specified
number of decimal places. This appears in the perlop6

manual page, for example. The use of strings can be
extended by writing the result of a floating point
operation to a string with the specified degree of
accuracy for the floating point implementation used,
and then converting that string back into a floating
point number again. The idea is to maintain a consistent
base 10 accuracy in the result before it is used in another
calculation. It is rather like using a calculator, and
writing down the numbers that appear on the screen so
they can be used in a subsequent operation.

6 http://www.perl.com/doc/manual/html/pod/perlop.html#Floating_

point_arithmetic.
For example, in single precision IEEE 754 floating
point, which guarantees at least 6 significant figures of
accuracy, the closest representable number to 0.4 is
0.4000000059604644775390625. Similarly, the closest
representable number to 0.1 is 0.100000001490116119-
384765625. The closest representable number to the
product of the two representable numbers ([[0.1] f!
[0.4] f] f) is 0.0400000028312206268310546875, but [0.04] f
(the closest representable number to 0.04) is 0.039999-
999105930328369140625. If the product is printed to
a string with six significant figures of accuracy,7 the string
reads ‘‘4.00000E�2’’. If this string is then converted
back to a float, the result is [0.04] f rather than
[[0.1] f! [0.4] f] f, so it would seem that we have dealt
quite nicely with any problem of accumulated errors from
multiplying two non-representable numbers. Indeed, this
method enables correct behaviour in Illustration 1.

However, not all calculations using this method work
out so well. For example, 1.0 and 3.0 are both exactly
representable, but when 1 is divided by 3, the nearest
representable floating point number is 0.3333333432-
674407958984375. This would convert to a string
‘‘3.33333E�1’’, with nearest representable number
0.3333329856395721435546875. If the latter is multi-
plied back up by 3.0, then the result obtained is 0.999999
(to six significant figures), rather than the desired result
of 1.000000 which is obtained when multiplying the
former by 3.

x

y

[ ]fx

[ ]fy

[ ]fz′

[ ] "" fz′
z

z′

[ ][ ]
f

fz "" ′

Fig. 9. Schematic diagram of the effect of using strings to convert the

result of a calculation z# to the nearest representable number to the n

significant decimal figures provided by the floating point implementa-

tion, ½$½z#�
f
$�

f
, which introduces another two potential sources of

errors. The results of all calculations then belong to the subset of

floating point numbers that are the nearest representable number to n

significant figures of some floating point number, indicated by the set

with the darkest grey background and thin border.

7 In C, this is achieved using sprintf(str, ‘‘%.6E’’, num), where

str is a buffer declared of type char *, and num is declared to have type

float or double; in Java the same effect is achieved with String

strZ (new DecimalFormat(‘‘0.000000E0’’)).format(num).

http://www.perl.com/doc/manual/html/pod/perlop.html#Floating_point_arithmetic
http://www.perl.com/doc/manual/html/pod/perlop.html#Floating_point_arithmetic
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Converting to a string and back again introduces
another two potential sources of error (Fig. 9).
Although these errors can counteract earlier errors,
they can also exacerbate them.

2.3.5. Using offsets
Another tactic for dealing with floating point errors is

to use a large offset M when making comparisons. This
is a piece of folklore among the programming commu-
nity, an instance of which appears on a game de-
velopment on-line discussion forum.8

� xÔy5½xCM�fO½yCM�f
� xR̂y5½xCM�fR½yCM�f
� x!̂y5½xCM�f!½yCM�f
� x%̂y5½xCM�f%½yCM�f
� xẐy5½xCM�fZ½yCM�f
� xŝy5½xCM�fs½yCM�f

Adding a sufficiently large term to the operands of
a comparison operator is intended to eliminate all the least
significant digits of the operands due to floating point
errors, thereby enabling an accurate comparison to be
made. When the operands are negative, however, fewer of
the least significant bits will be lost on addition toM than
when they are positive. Thus, there are many cases for
which xẐy, but �yÔ� x. One way of dealing with this
would be to subtract M from negative operands and add
M to positive operands. However, this requires accumu-
lated floating point errors to always maintain the correct
sign, which IEEE 754 floating point arithmetic does not
guarantee. Another approach is to ensure that all numbers
are always positive. This may not be possible for all
models, but in CharityWorld it can be achieved by using
an initial wealth greater than or equal to the ticket price.

For example, suppose we want to compare 0.1! 0.4
with 0.04. As mentioned in Section 2.3.4, in single
precision the closest representable number to the
product of the closest representable numbers of the
operands and the closest representable number to 0.04
are not equal. If we add 1024 to both, however, we get:

0:0400000028312206268310546875C1024

Z1024:0400390625

and

0:0399999991059303283691406250C1024

Z1024:0400390625

We can then correctly determine that (0.1! 0.4)C
1024 is equal to 0.04C 1024. However, in single pre-
cision, adding 1024 to the nearest representable number

8 http://www.flipcode.com/cgi-bin/msg.cgi?showThreadZ00000581&

forumZ3dtheory&idZ-1.
to 0.0002 gives the result 1024.000244140625, which is the
same result as adding 1024 to the nearest representable
number to 0.0003. Thus although single precision is quite
capable of detecting that 0.0002 is not equal to 0.0003,
using an offset of 1024 has them as equal. Seeing them as
different would require a smaller offset, illustrating that
for most models there is no compile-time setting for M
that guarantees correct behaviour for all parameter
settings. It is also possible for accumulations in floating
point errors to be sufficient that there is no offset that will
enable correct behaviour, as will be demonstrated for
tolerance windows in Counter-example 2.

Conceptually, the idea behind offsets may seem
appealing, and their use in CharityWorld can enable
correct behaviour to occur when it would otherwise not.
The theoretical basis for their use, however, is not
particularly sound. Since IEEE floating point stipulates
exactly rounded arithmetic operations, even the least
significant bit of one of the numbers being compared
can have an effect on their sum with M. For example,
consider two numbers aZ 1C 2�52 and bZ 1, with
MZ 253. In double precision, aCM is rounded up to
MC 2, but bCMZM. Even with the smallest possible
difference between a and b, therefore, using offsets would
not detect them as being equal, though with the same
value of M, 0 and 1 would be detected as being equal.

2.3.6. Using extended precision
The IEEE 754 standard allows for extended precision

floating point formats. Double extended format stip-
ulates at least 64 significant bits of precision and
a minimum of 15 bits for the exponent. The actual
precision offered is implementation specific. There are
two ways extended precision could be used. One
involves using double extended precision to store the
variables and results of computations, but converting to
double precision when making comparisons. The basis
for this is the hope that rounding errors will be kept to
the extra least significant bits of accuracy provided by
double extended precision. When converting to double
precision in comparison operations, these rounding
errors should then be lost. The effect is similar to using
offsets with double extended precision, but with a fixed
compile-time choice of offset (though the problems with
negative numbers would not apply). This is not
recommended for the reasons given above.

The second method involves using double extended
precision to gain extra accuracy. Using extended pre-
cision will not affect rounding errors due to conversion
between binary and decimal formats, and it will also not
necessarily enable computations to be made exactly that
could not be made exactly in double precision. It is
conceivable, however, that using double extended pre-
cision could enable a model to run for longer without
generating floating point errors, particularly if combined
with the use of interval arithmetic (see below).

http://www.macaulay.ac.uk/fearlus/floating-point/charity-world/,
http://www.macaulay.ac.uk/fearlus/floating-point/charity-world/,
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The catch with using extended precision is the
increased flexibility that the IEEE 754 standard allows
for these formats. This flexibility has the consequence
that a model may run differently on one platform than
on another given the same parameter settings and initial
seed and thus impacts the ease with which any results
can be replicated.

2.3.7. Interval arithmetic
A further stipulation of the IEEE 754 standard is that

functionality be provided to change the rounding
direction (which is round-to-nearest by default) (IEEE,
1985, p. 5). This is known as hardware rounding. If your
platform allows you to do this, there is the possibility of
representing each floating point number by an interval,
the minimum of which applies to the result of rounding
towards �infinity in an operation (the largest represent-
able number not greater than the exact result), and the
maximum to the result of rounding towards Cinfinity
(the smallest representable number not less than the
exact result). Where these facilities are not available,
software rounding can be used.9 Abrams et al. (1998)
compare various approaches to rounding with examples
in C. The true result of the computation is then known to
lie within these bounds. Furthermore, by modifying the
comparison operators so they are true if and only if they
apply to all members of their operands, any action taken
based on a decision depending on the comparison
operators can be known to be correct. However, it is
still possible for an action not to be taken because the
comparison operator returned false when the correct
result might have been true. It is possible to detect this by
checking the opposite of a comparison operator when it
returns false. If a comparison operator and its opposite
both return false, then there is uncertainty about which
action to take, and the agent could make the wrong
decision. Having detected this, a warning could be
issued, or the simulation could abort. If it did not happen
too often, the simulation could fork, ensuring that at
least one of the branches contains the correct result.

Various forms of interval arithmetic exist (Ullrich and
von Gudenberg, 1990). The following uses the upper
and lower bound approach (Alefeld and Herzberger,
1983). The arithmetic operators are outlined below for
two intervals [a1, a2] (where a1% a2) and [b1, b2] (where
b1% b2), using [x5 y] f� to represent the result of x5 y
rounded towards negative infinity, and [x5 y] fC to

9 In C, the fpsetround() function is provided to control the

rounding direction on the CPU (Unix manual page fpgetround(3C)).

No direct provision is currently made for hardware rounding in Java,

though utilities such as those available at http://www.dose-of-reality.

org/?IEEE754, which provide functions that compute the next floating

point number before and after the argument can be used to implement

an interval arithmetic that will give wider bounds than those from

using hardware rounding.
represent the result of x5 y rounded towards positive
infinity, where 5 stands for any of the arithmetic
operators (Alefeld and Herzberger, 1983). The situation
is rather more complex for multiplication and division
than for addition and subtraction because of the various
possibilities for the signs of the operands and how these
affect the possible minimum and maximum outcomes of
the operation.

� ½a1; a2�C½b1; b2�Z½½a1Cb1�f�; ½a2Cb2�fC�
� ½a1; a2� � ½b1; b2�Z½½a1 � b2�f�; ½a2 � b1�fC�
� ½a1; a2�!½b1; b2�Z½minf½a!b�f�ja˛fa1; a2g;
b˛fb1; b2gg;maxf½a!b�fCja˛fa1; a2g; b˛fb1; b2gg�

� ½a1; a2�O½b1; b2�Z½minf½aOb�f�ja˛fa1; a2g;
b˛fb1; b2gg;maxf½aOb�fCja˛fa1; a2g; b˛fb1; b2gg�

In interval arithmetic there are two modes for each
comparison operator corresponding to modal logic
(Kripke, 1963): a ‘possible’ mode, in which the truth
of the comparison operator holds for at least one pair of
members of each operand, and a ‘necessary’ mode
(represented using a square,), in which the truth of the
comparison operator holds for all pairs of members of
each operand (Alefeld and Herzberger, 1983). Using the
necessary mode, although there may have been floating
point errors in the computation of the operands, there is
certainty that whatever the real numbers might have
been, the required relationship holds.

� ½a1; a2�,O½b1; b2�5a1Ob2
� ½a1; a2�,R½b1; b2�5a1Rb2
� ½a1; a2�,!½b1; b2�5a2!b1
� ½a1; a2�,%½b1; b2�5a2%b1
� ½a1; a2�,Z½b1; b2�5ða1Za2Þ^ðb1Zb2Þ^ða1Zb2Þ
� ½a1; a2�,s½b1; b2�5ða1!b2Þnða2Ob1Þ

Using intervals enables the user to run a simulation
until a potentially wrong decision is made because of
floating point errors. It is possible, for example, that an
agent-based model is only required to run for a relatively
small number of cycles, and that during this time the
floating point errors do not accumulate enough to create
any uncertainty in the comparison operators.

2.4. Counter-examples

2.4.1. Counter-example 1
This counter-example was derived to illustrate the

weaknesses with the ‘warn’ technique discussed in
Section 2.3.1. Just as the SUA can have four variants
for determining the supply-awareness-condition and
supply-approach-condition, so can the SSA, though
with the SSA the inclusive and exclusive variants differ
in the set of neighbouring agents that satisfy the
approach-condition. Here we consider just two, the
mean and total inclusive variants, which should behave

http://www.dose-of-reality.org/?IEEE754
http://www.dose-of-reality.org/?IEEE754
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in the same way. The SSAtotal variant is the SSA exactly
as described in (1) and (2) above, whilst the SSAmean

variant computes the average as a fraction and com-
pares it with the wealth of the agent:

SSAmean-supply-awareness-conditionðAÞ

5wAO
1

#NðAÞC1

X
a˛NðAÞWfAg

wa ð16Þ

SSAmean-supply-approach-conditionðA;nðAÞÞ

5wnðAÞ!
1

#NðAÞC1

X
a˛NðAÞWfAg

wa ð17Þ

Using similar settings as in Illustration 1 when the
behaviour of the model was as predicted mathematically
(20! 20 environment, gZ 0.5, jZ 5, JZ xyjGZ 1000),
and adding facilities to check for errors in precision,
SSAtotal achieves convergence without any warnings,
since all of the calculations for the approach and aware-
ness conditions can be computed exactly. SSAmean, by
contrast, though it behaves in the same way as SSAtotal,
generates a warning almost every time the average
wealth is computed. Using a Moore neighbourhood
means that computing the average requires a division by
9, which yields an imprecise result in base 2 (unless the
average happens to be a multiple of nine divided by an
integer power of two). Thus, although SSAmean with
these parameters produces mathematically correct out-
put, errors are detected, demonstrating how a run with
errors does not necessarily mean the output is incorrect.

2.4.2. Counter-example 2
This problem shows how there can be values of the

parameters that preclude correct behaviour whatever
value is used for 3 when using tolerance windows
described in Section 2.3.2. To show this we must
introduce Proposition 1.

Proposition 1: Let x and y be two floating point numbers
and assume that summation and subtraction are exactly
rounded (as the IEEE 754 standard stipulates). Let
D(xG y) be the error in computing [xG y]f, expressed
as D(xG y)Z [xG y]f� (xG y). Then,

jDðxGyÞj%minfjxj; jyjg ð18Þ

Proof: From the definition of D(xG y), if [xG y] fZ x,
then |D(xG y)|Z |y|. Similarly, if [xG y] fZGy, then
|D(xG y)|Z |x|. The exactly rounded solution [xG y] f
will imply an error at most as large as the absolute error
that we would obtain by assuming [xG y] fZ x, or
[xG y] fZGy, since x and Gy are floating point
numbers and not necessarily the nearest to (xG y).
Therefore, |D(xG y)|%min{|x|, |y|}. ,
Now consider, as in Illustration 1, a model containing
9 SSAs on a 3! 3 grid with initial wealth w0Z 0. The
agent in the middle of the grid wins the lottery and
receives a jackpot of JZ 9jG. Let jZ 250,000,000 and
GZ 0.4. After the initialisation process, the model
should converge in j cycles, in each of which the winner
donates G to each of its 8 neighbours.

With these parameter settings, after ( j� 1) cycles, the
agents’ wealth is as follows:

wF � 32:06; wR ��0:08635; andSawa � 31:37:

where

wF is the winner’s wealth.
wR is the wealth of any of the agents who is not the
winner.P

awa is the sum of the nine agents’ wealth.

At this point, for the model to behave correctly, both
the SSA-supply-awareness-condition (14) and the SSA-
supply-approach-condition (15) should be satisfied for
the winner. For our particular case, these two conditions
are as follows, from the definition of D in Proposition 1:

SSA-supply-awareness-conditionðFÞ

59wFO

�X
a

waC3

�
f

59wFOD

�X
a

waC3

�
C
X
a

waC3

53!9wF �
X
a

wa �D

�X
a

waC3

�
ð19Þ

SSA-supply-approach-conditionðF;RÞ

59wR!

�X
a

wa � 3

�
f

59wR!D

�X
a

wa � 3

�
C

�X
a

wa � 3

�

53!
X
a

wa � 9wRCD

�X
a

wa � 3

�
ð20Þ

For the jackpot winner to donate money at the last
cycle (cycle j ), it is necessary that:

3!32:15CDð31:37� 3Þ; from ð20Þ ð21Þ

From Proposition 1, |D(31.37� 3)|% 31.37. So the
following condition is necessary to correctly undertake
the last cycle:

3!32:15CDð31:37� 3Þ!32:15C31:37Z63:52 ð22Þ

If the last cycle has been correctly undertaken, Eq.
(22) holds and so, of course, does 3! 63.52. The agents’
wealth is then the following:
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wF � 28:86; wR � 0:3137; andSawa � 31:37:

At this point we have to make sure that the winner
does not satisfy the SSA-supply-awareness-condition,
otherwise the model would not achieve termination as it
should. From Eq. (19), preventing the jackpot winner
from satisfying the SSA-supply-awareness-condition
would require:

3R228:37�Dð31:37C3Þ ð23Þ

Again, from Proposition 1, |D(31.37C 3)|% 31.37.
So the following condition is also necessary for the
model to achieve termination at the right time:

3R228:37�Dð31:37C3ÞR228:37� 31:37Z197 ð24Þ

But, as is evident from Eq. (22), for the winner to
donate money at the last cycle (cycle j ) we needed
3! 63.52. There is thus no value of 3 that enables
correct behaviour.

As the above examples show, 3 cannot be set to any
compile-time constant, and leave the user assured that
the program will behave correctly.

2.4.3. Counter-example 3
This counter-example uses the Portion Supply Agent

(PSA) from Illustration 3, to demonstrate an issue with
using the ‘strings’ technique (Section 2.3.4). Here, the
initialisation is slightly different from elsewhere, in that
the jackpot J is given directly to the winning agent, with
none of the agents having to pay a ticket price to enter
the lottery. Agents not receiving the jackpot retain their
initial wealth w0, and the winning agent’s wealth after
initialisation is w0C J.

Using xZ yZ 3, w0Z 0, JZ 1, GZ 1, and the
jackpot winner at location (2, 2), with real numbers, the
model should converge after 1 cycle, with each agent
having wealth 1/9. Errors in the floating point arithmetic
mean that the winning agent has a slightly different
wealth from the other agents, and correct behaviour
does not occur using normal floating point arithmetic.
Using a technique such as tolerance windows (Section
2.3.2), the correct behaviour can be generated.

Using the string conversion process described in
Section 2.3.4, however, the model does not terminate.
Initially, the winning agent has wealth 1 and the other
agents all have wealth 0. Since GZ 1, the winning agent
donates gZ 1/9 to each of the other agents in turn. In
what follows, x.n.x is used as shorthand for the digit x
repeated n times.When written to a string, the donation g
is ‘‘1.1.14.1E�1’’ to the 15 significant figures of accu-
racy guaranteed by double precision, which when con-
verted back to a double is [‘‘1.1.14.1E�1’’] f. As it
donates to each neighbour in turn, the winning agent’s
wealth goes from [‘‘1.0.14.0E0’’] f to [‘‘8.8.13.89E�1’’] f
to [‘‘7.7.13.78E�1’’] f, and so on, until after the last
donation, it has wealth [‘‘1.1.13.12E�1’’] f and all the
other agents wealth [‘‘1.1.14.1E�1’’] f. In the next cycle,
the winning agent begins with wealth that is greater than
the average, and so it donates again. This time, the
amount to donate is the nearest number to a ninth of
[‘‘1.0.14.0E�15’’] f, which is, to 15 significant figures
[‘‘1.1.14.1E�16’’] f. The winning agent faithfully at-
tempts to donate this small quantity to each of its
neighbours, but the nearest representable number to the
sum of [‘‘1.1.14.1E�1’’] f and [‘‘1.1.14.1E�16’’] f is
[‘‘1.1.14.1E�1’’] f to 15 significant figures, and thus the
neighbours receive nothing! Similarly, the winning
agent’s wealth of [‘‘1.1.13.12E�1’’] f is also untouched
by this false act of generosity. In the following cycle, the
winning agent is thus again prepared to donate, and the
process repeats endlessly.

2.5. Software

The software used to conduct the experiments is
written in Objective C and makes use of the Swarm
libraries (version 2.1.1 or 2.2). The CharityWorld model
is written in a manner that follows a fairly standard
simple Swarm model implementation, with the excep-
tion that all floating point numbers are represented
using objects rather than the standard double C data
type. These objects all belong to the class DoubleSimple,
which contains a double instance variable, and methods
to replace the arithmetic operators {C, �, *, /} and the
comparison operators. Subclasses of DoubleSimple
implement the various techniques discussed above, and
DoubleSimple features creation methods that cause all
new floating point objects to belong to one of these
subclasses rather than DoubleSimple itself (Fig. 10). The
user can therefore specify which subclass of Double-
Simple they wish to use throughout a particular
simulation, and hence which technique will be used to
manage floating point issues.

Ideally, the DoubleSimple classes would have been
implemented using CCC classes in Objective-CCC,
which, through operator overloading, would have made
code using these classes more readable, and reduced the
memory management burden on the programmer. How-
ever, at the time of programming, an Objective-CCC
compiler compatible with Swarm was not available.
From the gcc mailing list, Objective-CCC will hopefully
be made available in gcc version 3.5 (Laski, 2004).

The parameter file to the software has a Scheme
syntax (Dybvig, 2003), typical of Swarm models.

The following shows an example parameter file,
which applies to Illustration 1:

(list

(cons ’modelSwarm

(make-instance ’PaperModelSwarm
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Fig. 10. UML Class Diagram depicting the implementation of the various techniques for dealing with floating point arithmetic issues compared in

this paper. The constants DBL_DIG and DBL_EPSILON appear in the C header file float.h, and the fp_except type is defined in ieeefp.h.
#:xSize 3

#:ySize 3

#:jackpotStr DoubleWarnZ4.5!ALL

#:initialWealthStr DoubleWarnZ0.0

#:agentClassStr SSA

#:generosityStr DoubleWarnZ0.5

#:winnerCoord "(2,2)"

#:loserChooser all)))

The parameters for the model are entered in the
parameter file on the lines beginning ‘#:’. Parameters
xSize and ySize are integers, and refer to the size of the
environment, x and y as described in Section 2.1. The
class of agent to use is entered as the value for
agentClassStr, and may be one of SSA, SSAMean,
SSATotal, PSA, SUAInclusiveMean, SUAInclu-
siveTotal, SUAExclusiveMean, SUAExclusi-
veTotal. The winnerCoord parameter is used to
specify an agent in the space to win the lottery, either
using the word random to signify an arbitrary choice,
or in the format "(wx,wy)", where italics should be
replaced with the required setting, and bold should
appear as written. The loserChooser parameter value
should be either the word all, or, for Counter-example
3, the word none.

The jackpot J, initial wealth w0, and supply
parameter G are entered as values for jackpotStr,
initialWealthStr and generosityStr, respectively, using
a string with the following format, where class is
replaced with one of the classes shown in Fig. 10:

class¼value

Certain classes require or permit configuration.
Configuration need only appear the first time the class
appears in the parameter file (e.g. in jackpotStr above),
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and is appended to the end of the value without
whitespace. The following details the configuration of
those classes that require it:

DoubleWarn: Use !trap, where trap is one of five
strings representing the IEEE 754 stipulated excep-
tions: INV (invalid operation), OFL (overflow),
UFL (underflow), IMP (imprecision), DZ (division by
zero); or ALL, to trap all of them. Multiple traps can
also be enabled through a sequence of !traps, e.g.
DoubleWarnZ 0.4!OFL!UFL e trap overflow and
underflow only.
DoubleEpsilon: Use ~epsilon, where epsilon is the size
of the tolerance window required.
DoubleOffset: Use ~offset, where offset is the size of
offset required.
DoubleString: Use ssf, where sf is the number of
significant figures required.

The DoubleWarn class is used to implement the
technique described in Section 2.3.1, DoubleEpsilon for
that in Section 2.3.2, DoubleKahanSum for Section
2.3.3, DoubleString for 2.3.4, DoubleOffset for 2.3.5,
DoubleLong for 2.3.6, and DoubleIntervalWarn for
2.3.7. DoubleShort is used in Illustration 1 (Section
2.2.1). DoubleSimple is used as a control.

Output from the model is driven by verbosity settings,
which are specified in a file given to the model executable
as an argument to the DV flag. Each verbosity setting
details a particular situation in which to print a message,
and a level of verbosity at which to print it, with 0 being
used to signify that the model should always print the
message. By default, a message is never printed. When
comparing output of the model between various
techniques, we checked that in each cycle, the sequence
of donations and the agents appearing on the schedule-
list match between run-generated outputs. This requires
a verbosity file set up as follows:

Cycles 0

DonorContents 0

TransfersNoMoney 0

The executable for CharityWorld should thus be
called from the command line as follows:

charity DV verbosity_ file parameter_ file

The output from running the model with the
parameter file and verbosity file given above looks
something like the following:

../../charity e Flags:

1: CV ../check.verby

Seed: 321654789

Money transferred from (2, 2) to (2, 2)
Money transferred from (1, 2) to (2, 2)

Money transferred from (3, 1) to (2, 2)

Money transferred from (1, 3) to (2, 2)

Money transferred from (2, 1) to (2, 2)

Money transferred from (2, 3) to (2, 2)

Money transferred from (1, 1) to (2, 2)

Money transferred from (3, 2) to (2, 2)

Money transferred from (3, 3) to (2, 2)

Content of donors list:

[(2, 2)]

--------------------------[ Cycle 000000001

Money transferred from (2, 2) to (3, 1)

Money transferred from (2, 2) to (3, 2)

Money transferred from (2, 2) to (1, 2)

Money transferred from (2, 2) to (2, 1)

Money transferred from (2, 2) to (2, 3)

Money transferred from (2, 2) to (1, 1)

Money transferred from (2, 2) to (1, 3)

Money transferred from (2, 2) to (3, 3)

Content of donors list:

[]

1: No beggars or donors left!

Terminated

Converged - certain

The transfers of money before Cycle 1 are to the
winner of the jackpot from all the agents participating in
the lottery.

As well as checking the sequence of donations and the
agents on the schedule-list, we also checked for termina-
tion (which occurs when there are no agents on the sche-
dule-list) and convergence at termination. Convergence
occurs when all agents have equal wealth at termination,
where equality is defined by the particular technique being
used. The certainty of the convergence is checked in case
a technique allows both its ‘not-equal’ and ‘equal’
operators to return ‘false’ at the same time. This could
happen when, for example, two non-singleton intervals
with non-empty intersection are being compared.

The models were all run using the same default seed,
given in the example output above. This is to ensure the
closest possible comparability between techniques. To
use a different seed, the -s flag can be given to the
command line after the parameter file. A full list of
available flags and options can be obtained by running
the executable without any command line options.

The source code is available on-line at http://www.
macaulay.ac.uk/fearlus/floating-point/charity-world/, along
with all parameter files used to generate results in this
paper.

3. Results

The results are given in Table 1, which shows those
techniques not involving a parameter to configure them

http://www.macaulay.ac.uk/fearlus/floating-point/charity-world/
http://www.macaulay.ac.uk/fearlus/floating-point/charity-world/
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Table 1

Results of various methods of coping with errors in floating point arithmetic that do not require a configuration parameter, together with the control

Problem Control Warn (Section 2.3.1) Kahan (Section 2.3.3) Extended (Section 2.3.6) Interval (Section 2.3.7)

Cygwin Solaris

I1 GZ 0.5 N N N N N N

GZ 0.4 1 10 N 1 1 11
I2 JZ 700 N N N N N N

JZ 70 0 00 N N 0 N0

I3 537 537537 537 8223 8247 537537
I4 SUAexc-total 0 00 15 12 0 150

SUAinc-total 0 00 15 12 0 150
SUAexc-mean 0 00 15 12 0 890
SUAinc-mean 0 00 15 12 0 890

C1 SSAtotal N N N N N N

SSAmean N N0 N N N N

C2 GZ 0.5, jZ 2.5e8 N N N N N N

GZ 0.4, jZ 2.5e8 2.5e8C 1 2.5e8C 10 2.5e8C 1 2.5e8C 1 2.5e8C 1 2.5e8� 292.5e8 � 29

C3 1 10 1 1 1 11

Entries show the cycle at which the model deviates from correct behaviour, with 0 for the initialisation cycle and N if for the purpose of the problem,

there is no deviation. If a warning is issued, the cycle at which this occurred appears as a subscript.
and Table 2, for those techniques that do. Table 3 shows
the parameters used for each problem. In Table 1, each
result is given as a pair dw, where w is the cycle at which
the method gives a warning of potential problems with
floating point errors, and does not appear if no warning
is given; and for each problem, d is the cycle at which the
method shows a difference in behaviour in terms of the
sequence of donations or the agents on the schedule-list,
or ‘N’ if no difference in behaviour is observed (except
that in Illustration 2, d is ‘N’ if the model does not
diverge from the correct behaviour during initialisation
e see Fig. 7). Initialisation is represented using cycle
number zero. The control is the default behaviour using
double precision for all floating point variables and no
techniques aimed at coping with floating point errors.

The results in Table 2 are given as a range of
configuration parameter settings of the technique for
which the model behaves as though it was working with
real numbers, or ‘None’ if no such settings are possible.
For tolerance windows, the results show the range of
values for 3 that enable correct behaviour. In the case
of strings, the configuration parameter is the number of
significant base-10 digits to write to the intermediate
string. The range is found by testing numbers of
significant figures from 1 to 25, and then 50. A 25C
for the maximum of the range implies that both 25 and
50 significant figures gave the correct behaviour. For
offsets, the only configuration parameters tested were
integer powers of two. Thus a maximum of 2n means
that n is the maximum power of two offset for which the
model behaved correctly, and hence although 2nC1

definitely does not work, offset values between 2n and
2nC1 may or may not work.

Table 1 shows that all techniques with no parameter
deviate from the correct behaviour in at least one
Illustration or Counter-example, whilst Table 2 shows
Table 2

Results of three methods of dealing with errors in floating point arithmetic that require a configuration parameter

Problem Tolerance windows

(Section 2.3.2)

Strings

(Section 2.3.4)

Offsets (Section 2.3.5)

w0Z 0 w0O 0

I1 GZ 0.5 [0, 4.5) [2, 25C] [0, 255] [0, 255]

GZ 0.4 [2�50, 3.6) [2, 15] [24, 254] [2�54, 254]

I2 JZ 700 [0, 5.59e3] [2, 25C] [0, 265] [0, 265]

JZ 70 [4.45e�16, 5.60e2] [2, 15] [24, 262] [0, 262]

I3 None None None None

I4 SUAexc-total [1.78e�14, 0.7) [3, 15] [27, 251] [210, 251]

SUAinc-total [1.07e�14, 0.7) [3, 15] [29, 251] [29, 251]

SUAexc-mean [2.89e�15, 8.75e�2) [3, 15] [27, 248] [27, 248]

SUAinc-mean [2.89e�15, 7.78e�2) [3, 15] [27, 248] [27, 248]

C1 SSAtotal [0, 0.5) [4, 25C] [0, 251] [0, 251]

SSAmean [0, 5.56e�2) [4, 25C] [0, 248] [0, 248]

C2 GZ 0.5, jZ 2.5e8 [0, 4.5) [10, 25C] [0, 255] [0, 255]

GZ 0.4, jZ 2.5e8 None [10, 15] None None

C3 [1.60e�16, 1) None [23, 253] n/a
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that all techniques with a parameter setting have at least
one parameter value for each Illustration or Counter-
example that causes the model to behave incorrectly.
Thus, none of the techniques guarantee correct behav-
iour. However, interval arithmetic always provides a
warning before or during the cycle at which the model
deviates from correct behaviour. Further, for those
Counter-examples and Illustrations where a configura-
tion parameter exists that enables correct behaviour,
tolerance windows are effective for 1.78! 10�14%
3! 0.0556, offsets for 10% log2M% 48, and strings
when the number of significant figures is between 10
and 15.

In Illustration 1, when GZ 0.4, the Kahan summa-
tion algorithm is able to achieve termination and
convergence without deviating from the correct behav-
iour observed when GZ 0.5. None of the other
techniques are able to guarantee this, though the
parameterised techniques in Table 2 are able to achieve
the correct behaviour for a wide range of parameter
settings. The Kahan summation algorithm also works
well in Illustration 2 when JZ 70; and in Cygwin on an
Intel PC where extended precision uses 96-bit floating
point numbers (according to the size of operator), the
model behaves correctly, though not in Solaris on
a Sparc box, with 128-bit extended precision. Interval
arithmetic also behaves correctly here, though it issues
a warning during the initialisation cycle.

In Illustration 3, extended precision is effective in
prolonging the length of time the simulation can be run
before underflow occurs, something that is obviously
not achievable by any of the techniques requiring
a parameter. Again, a slight difference is observed
between the extended precision on an Intel chip and
a Sparc chip. This difference is less than might be
expected given the latter uses an extra 32 bits in its
extended precision format.

In Illustration 4, the parameterised techniques all
have more than one value for the parameter that enables
correct behaviour in all four agent classes, whilst of the

Table 3

Summary of model parameters used in the various problems, where QxS

is the smallest integer that is not less than x

Problem x! y J w0 Agent class G

Offset

I1 3! 3 9G 0 QGS SSA Varies

I2 10! 10 70 or 700 0 1 or 7 SSA Any exact

I3 2! 1 1 0 1 PSA 0.75

I4 10! 10 70 0 1 SUAvarious 0.7

C1 20! 20 1000 0 3 SUAvarious 0.5

C2 3! 3 9Jg 0 QjGS SSA Varies

C3 3! 3 1 0 0 PSA 1

Note that offsets use a different value for the initial wealth than other

approaches, and that Counter-example 3 involves a different initialisa-

tion process than the other problems. Also, Counter-example 2 uses

a cut down version of the software since j is large, at 250,000,000.
non-configurable techniques, interval arithmetic runs
for the longest period before incorrect behaviour is
observed, though it issues a warning during initialisa-
tion. For tolerance windows, correct behaviour is
observed in all four classes for 1.78! 10�14% 3

! 0.0778, for strings, any number of significant figures
from 3 to 15 is effective, whilst for offsets when w0Z 0,
the same is achieved when 9% log2M% 48, with the
lower bound increasing to 10 when w0O 0. Using a non-
zero initial wealth increases the range of values for M
that produce correct behaviour in Illustrations 1 and 2,
but has no effect in Counter-example 1, and decreases it
in Illustration 4. Using an initial wealth greater than or
equal to the ticket price to ensure that all numbers are
positive when using offsets is not therefore always
effective in improving the offset technique.

Counter-example 1, aimed at the warning technique
in Section 2.3.1 has little effect on the other non-
parameterised techniques. For offsets and tolerance
windows, the use of SSAmean rather than SSAtotal

decreases the range of configuration parameters that
produce correct behaviour. The strings technique is the
only technique able to generate correct behaviour in
Counter-example 2; extended precision is interestingly
not effective in this case. Counter-example 3 shows
a weakness in the string technique, but the other
configurable techniques are able to produce correct
behaviour for some of their parameter settings. None of
the non-configurable techniques are able to produce
correct behaviour for Counter-examples 2 and 3, though
interval arithmetic issues a warning in the same cycle as
the deviation is observed.

4. Discussion

4.1. Evaluation of techniques

The use of tolerance windows is possibly one of the
most popular techniques for coping with floating point
arithmetic errors, and they are discussed by Knuth
(1998, p. 233), who argues that the additive tolerance
windows of the kind used here assume a particular order
of magnitude for the operands, and suggests comparing
the difference between the operands with a multiple of
the larger operand. His suggested comparison operators
have been implemented by Theodore Belding in a small
package available on the SourceForge website.10 It is
not clear, however, from Knuth’s notation, whether he
intends the difference between the operands to be
computed exactly or in floating point arithmetic, and
so these comparison operators were not included here.
Assuming he intended floating point arithmetic, in the

10 http://fcmp.sourceforge.net/.

http://docs.sun.com/db/doc/806-7996
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case of Illustration 1 we found that whilst using 3Z 1
allowed correct behaviour with Knuth’s comparison
operators, 3Z 0.5 did not. Thus if our assumption about
his intentions is valid, it would seem there is little
difference between issues with the tolerance windows
here and those of Knuth in terms of choosing values of
configuration parameters.

The popularity of tolerance windows is understand-
able, since they are relatively easy to implement, and
work fairly well. Some fairly extreme circumstances are
required to generate situations for which no value of 3
enables correct behaviour. In Illustration 3, any finite
floating point representation will eventually result in
underflow, whilst in Counter-example 2, 250 million
cycles are used to create a situation in which accumu-
lated floating point error is sufficiently large that
tolerance windows cannot work. Models using large
numbers of cycles are not unheard of, however.
LeBaron et al. (1999) ran the Artificial Stock Market
for 250,000 cycles before analysing time series to allow
the agents time to learn (p. 1499), and made one run of 1
million cycles (p. 1507).

Whilst tolerance windows, and the other techniques
with a configuration parameter, are effective in many
cases, they cannot inform the user when they have not
worked. In a typical agent-based modelling context this
is an issue. A key concept associated with agent-based
modelling is that of emergent effects. Although there is
no agreed definition of emergence, many authors refer
to the element of ‘surprise’ (Mihata, 1997; Liebrand
et al., 1998; Ronald et al., 1999). Whilst the association
of surprise with emergence has been argued against
(Gilbert, 1996), clearly we are in something of a luxuri-
ous position in the examples above: we know what to
expect, and when it does not happen, that something is
wrong. In general, this may not be the case. If so, then
when two configuration parameters for the floating-
point handling technique result in different emergent
outcomes, there is no way to choose which is correct.
Even if all configuration parameters cause the same
emergent effect, it is possible that none of them are
correct, albeit that some fairly extreme examples were
required in CharityWorld to create such a situation.

The Kahan Summation Algorithm is effective in the
case of Illustrations 1 and 2, at least for the particular
parameters used. This demonstrates the merits of
familiarising oneself as far as bearable with the floating
point literature in case there are ways of implementing
particular mathematical expressions that either elimi-
nate or reduce the impact of rounding error. As
Langlois (2004) points out, however, whilst rewriting
expressions can reduce error, there is still no guarantee
that the result is a good enough approximation.

Of all the techniques demonstrated here, only interval
arithmetic and warning on detection of errors make any
use of the extra functionality stipulated by the IEEE 754
standard, the former making use of the configurable
rounding direction facilities, and the latter the capability
to interrogate the flags on the floating point unit that are
set when an error occurs. Both are pessimistic, in that
they may issue a warning when the model has not yet
done anything wrong, but of the two, interval arithmetic
is less so. For interval arithmetic, there is the further
complication that for non-monotonic functions, the
minimum and maximum of the result may not occur at
the bounds of the interval. The bounds of interval
arithmetic may also over-estimate the potential floating
point error of an expression. In some situations it may
be possible to ameliorate these drawbacks through
careful rewriting of the expressions, but even if it is
not, both interval arithmetic and issuing a warning have
the critical advantage over the other techniques that
they never lull the user into a false sense of security.

If floating point parameters cause so many problems,
there might be a temptation to use integers instead,
a technique employed by the PS-I simulation platform
(Lustick, 2002; Dergachev, 2004, pers. comm.). Whilst
this may prove effective for the kinds of model PS-I is
used to build, in general the problems with floating
point arithmetic derive from using a discrete parameter
to represent a non-discrete phenomenon, and using
integers instead of floating point numbers can be
expected to make matters worse. The integer division
operation, for example, is effectively defined to round
towards zero. If a parameter involves an accumulation
of results of a series of division operations, errors will
also accumulate from the missed remainders. With
integers, there is also no access to standard mathemat-
ical library functions, such as square root, power and
trigonometric functions. Floating point arithmetic is the
mathematics of approximating continuous phenomena
with discrete parameters, and, used carefully with the
full facilities provided by IEEE 754, it achieves this
remarkably well. Trying to achieve the same using
integers would be an act of hubris.

Significantly, the worst performing technique is the
controldthe case where no remedial action is taken to
address floating point issues. Using extended precision
(which merely involves changing the datatype of floating
point variables) likewise performs poorly, only improv-
ing on the control in Illustration 3 through being able to
run for longer before underflow occurs. Whilst this
might be effective in a case where the experimental
design treated more than a certain number of cycles as
being infinity, it is clear that ignoring these issues is in
general not the best way of ensuring that a computer
model is behaving as it is designed to.

4.2. Robustness

It might be argued that a model that is sensitive to
floating point errors somehow lacks robustness. Perhaps
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it does not matter if an agent takes the ‘wrong’ decision
because of floating point errors, or if it does matter, then
there is something wrong with the model. For example,
if a variable is very close to the threshold at which an
agent takes one course of action rather than another,
maybe it should be unimportant which of the two is
finally selected. If the model shows systematically
different behaviour when run with a floating point
valued variable from the way it would behave if reals
were used, then it could be that the model is too sensitive
to that variable.

There are a number of arguments against this view.
Firstly, the way that variables sensitive to floating
point arithmetic behave is somewhat different to the
way that other sensitive variables in the model might
behave. From the example in Illustration 1, if GZ 0.5,
0.51 or 0.52, the model converges, if 0.53, it does not,
but for 0.54, 0.55 and 0.56 it does, then at 0.57, 0.58
and 0.59 it does not. Considering three significant
figures, the model converges if GZ 0.502, 0.504, 0.506
and 0.508, but not 0.501, 0.503, 0.505, 0.507 or 0.509.
A real-world system seems unlikely to display this kind
of sensitivity, with the exception of fractal basin
boundaries. Related to this matter, Corless (1994)
discusses confusion between genuine chaotic dynamics
in real-world systems and artefacts of floating point
arithmetic.

Secondly, a model can be shown mathematically to
be completely robust in its behaviour, but such
robustness does not transfer to the computer simulation.
In the case of CharityWorld, for any G, if JZ jxyG, we
can prove mathematically that the model should
converge using SSAs. By putting this constraint on the
parameters, the convergence of the model should not be
sensitive to G at all. CharityWorld is thus an example of
a model arguably designed to be as robust as possible
relative to the parameter G in the realm of arithmetic
with real numbers. It is surely not reasonable to expect
such a model to also be robust in a realm where the
associative laws of addition and multiplication, and the
distributive law between multiplication and addition no
longer necessarily apply (Knuth, 1998, p. 231). It is not
even clear whether designing a model to be robust in
floating point arithmetic rather than real number
arithmetic would be desirable.

As has already been mentioned, errors in data can
have a more significant effect on the behaviour of
a model than errors in floating point arithmetic. Yet
this does not mean that floating point errors can be
ignored; neither can it be assumed that floating point
errors and data errors can be treated in the same way.
Data errors occur once, before the model even begins,
whilst floating point errors occur throughout the
simulation. Some authors, such as Vignes and La
Porte (1974), do argue for treating floating point errors
in a probabilistic fashion, much as one might treat
data errors. The deliberate introduction of noise to
computations is a common modelling practice to assess
the robustness of a model. Kahan (1998), however,
argues that analyses of floating point errors probabi-
listically generally require the assumptions that round-
ing errors are random, weakly correlated, and have
a continuous distribution, when in fact, these errors
are not random, are often correlated, and often behave
like discrete variables. Further, he argues that rando-
mised perturbations of arithmetic operations, by
ignoring known theorems about harmless rounding
errors, can exaggerate the effects of rounding error
without offering any guarantee of correctness
(Kahan, 1998).

Finally, it cannot be best practice to allow floating
point errors to determine the robustness of a model or
sensitivity of variables, not least because it has been
shown that errors in floating point arithmetic are not
random (Kahan, 1998). For example, in IEEE round-to-
nearest-even mode, adding any representable number
2% z! 3.7 to [0.3] f will cause the computer to round
down.11 Moreover, there are differences between IEEE
754 compliant platforms in the results delivered for
some computations (Anon., 2001). In general, control
over assessing the sensitivity of the model should ideally
lie entirely with the user, and should not depend on the
platform on which the model is run.

4.3. Recommendations to agent-based modellers

There are two key approaches that agent-based
modellers can employ to deal with floating point
errors. On the design side, work can be done to reduce
the element of surprise associated with emergent
effects. Though agent-based models are often used in
situations that are mathematically intractable, mathe-
matical analysis can complement computer simulation
work, as illustrated by authors such as Gotts et al.
(2003a) and Brown et al. (2004). Analysis of simplified
versions of the full model could be used to generate
expectations of the likely output from the computer
simulation beforehand, or used afterwards to confirm
that a particular emergent effect is consistent with the
model design. Mathematical analysis could also be
used to identify useful phenomena, such as quantities
that should remain constant throughout the simulation

11 The decimal number 0.3 is the recurring binary fraction 0.0 1001

1001. In double precision floating point this is stored as

1.0011.0011! 2�2 (where the ellipsis is replaced with eleven lots of

0011). Both z and [z C [0.3] f] f have exponent 1, meaning that the last

three bits of [0.3] f cannot be included in the result. These last three bits

are 011, less than half the unit in the last place of the result, and

therefore not sufficient to cause an upward rounding.
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and could be displayed to confirm that they are
behaving correctly.

On the programming side, an awareness of floating
point arithmetic issues and the limitations of techniques
for dealing with them can prevent careless mistakes.
Some of the techniques above can be combined, such as
interval arithmetic with extended precision, or tolerance
windows with carefully chosen expressions that mini-
mise rounding error. It is also worth reviewing the
numerical analysis literature before implementing stan-
dard mathematical expressions or procedures. In gen-
eral, however, as Higham (2002, p. 26) points out,
‘‘There is no simple recipe for designing numerically
stable algorithms.’’ Nevertheless, the following are a few
of the guidelines he does offer (p. 27):

� Avoid subtracting quantities contaminated by error
if possible.

� Minimise the magnitude of intermediate quantities
in expressions relative to the final solution.

� Look for different formulations of a computation
that are mathematically equivalent but more numer-
ically stable.

� Avoid overflow and underflow where possible.
� Look at the numbers generated during a simulation.

5. Conclusion

We have demonstrated that floating point errors
should not be ignored in computer implementations of
agent-based models, through demonstrating a simple
agent-based model with an emergent outcome that is
affected by floating point errors during the simulation.
Although this is a worst-case scenario, it should serve as
a warning.

Of the various remedies to the problem of errors in
floating point arithmetic explored here, none of them
guarantee that the principles on which the model was
designed are rigorously adhered to throughout any
particular simulation run. Some remedies at least
indicate when these principles have not been rigorously
adhered to, and all involve extra computation that will
slow simulation times. However, the belief underlying
the methods presented in this paper is that it is better
to have a slow model that can tell you whether floating
point errors have affected the correctness of a run,
than a fast model that cannot. Of those approaches
studied, interval arithmetic seems the most promising
e it is at least the safest. Knuth (1998) is also in
favour of interval arithmetic: ‘‘The prospects for
effective use of interval arithmetic look very good, so
efforts should be made to increase its availability and
to make it as user-friendly as possible’’ (p. 241).
Perhaps programming languages should include data-
types for interval arithmetic. They should certainly
make available all of the functionality stipulated by the
IEEE 754 standard.

Future work could look at the extent to which
changing the way floating point expressions are coded
can affect the statistical signatures from the model;
whether focusing on runs parameterised such that they
have no floating point errors (should this be possible)
introduces a bias when using a model; the extent to
which interval arithmetic can be effectively applied in
other agent-based models; and on other more elaborate
techniques for doing arithmetic with real numbers in
computers, such as lazy arithmetic (Michelucci and
Moreau, 1997).
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Appendix 1

If jZ J/(xyg) is a natural number, then simulations
involving SSAs will eventually converge with probabi-
lity 1.

Proof: Since the initial wealth (the same for every agent)
is a reference point which is not relevant for the proof,
we will assume for clarity that it is zero.

We can think of the situation where jZ J/(xyg) is
a natural number as setting up an environment where
one SSA (F ) has (xy�1)j quanta of positive wealth
(which will be called ‘pecunions’) and the other (xy�1)
SSAs have j quanta of negative wealth (or ‘impec-
unions’). One pecunion has value g whilst an impec-
union has value �g.

When an SSA with positive wealth donates to an SSA
with negative wealth, a pecunion from the donating
SSA annihilates with an impecunion from the recipient
SSA. When an SSA with positive wealth donates to any
other SSA, the pecunion from the donating SSA can be
thought of as moving from the donor to the recipient. It
is also possible for an SSA with zero or negative wealth
to make a donation, since the SSA-supply-awareness-
condition pertains only to the local average wealth. This
would effectively imply that an impecunion from the
recipient SSA moves to the donating SSA. Note that
the SSA-supply-awareness-condition and SSA-supply-
offering-condition ensure that an SSA cannot donate to
a neighbour with the same or greater wealth. Table A1
summarises these results.
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Table A1

Relationship between the wealths of donating and recipient SSAs, and their consequences for pecunions and impecunions

Recipient simple supply agent

Wealth ! 0 WealthZ 0 WealthO 0

Donating simple supply agent Wealth! 0 Impecunion movement Not possible Not possible

WealthZ 0 Impecunion movement Not possible Not possible

WealthO 0 Pecunioneimpecunion annihilation Pecunion movement Pecunion movement

In the general case, the initial wealth should be substituted for zero in the row and column headings.
Each donation can thus be seen as involving the
movement of a pecunion or impecunion, or the
annihilation of a pecunioneimpecunion pair e the last
of these bringing the simulation closer to termination.
The simulation converges when all pecunions have
annihilated with impecunions.

The proof of convergence, which is given somewhat
informally, is based on the fact that a situation where
there is a certain number p of pecunioneimpecunion
pairs can be seen as a discrete-time absorbing Markov
chain with a finite state-space (Grinstead and Snell,
1997, p. 415). An absorbing Markov chain is a
Markov chain that has at least one absorbing state (a
state that cannot be left) and from every non-
absorbing state it is possible to reach an absorbing
state in a finite number of steps. We define the only
absorbing state as the situation where an annihilation
of wealth quanta takes place (i.e. the number of
pecunioneimpecunion pairs decreases). The rest of the
possible (transient) states are characterised by the
following properties:

� A certain distribution of pecunions and impecunions
over the grid. The number of pecunions in each cell
(i.e. owned by each agent) is bounded by p whereas
the number of impecunions in each cell is bounded
by the minimum of p and j.

� A schedule-list of potential donors (the number
of possible states for which is bounded by (2xy�1)
and the order of which is not relevant since
agents are selected from the schedule-list at ran-
dom).

Since each property has a bounded integral number
of possible values, the number of possible transient
states is finite. Each of these possible transient states
satisfies two constraints:

� The total number of pecunioneimpecunion pairs
is p.

� Any SSA that satisfies the supply-awareness-condi-
tion is on the schedule-list (the fact that the stepping
agent and all its neighbours are rescheduled after the
redistribution cycle ensures that no SSA satisfying
the supply-awareness-condition is left off the sched-
ule-list).

Any situation that can arise in a simulation where
there are p pecunioneimpecunion pairs will correspond
to one of these transient states. Clearly, for any of these
transient states we could draw at least one direct route for
(at least) one pecunion to meet (at least) one impecunion,
i.e. a route towards the absorbing state (Fig. A1).

This route has a certain probability of happening
since any SSA in the route would be able to donate (and
therefore would be on the list) and they have a certain
probability of being chosen since agents are selected
from the schedule-list at random. Therefore it is always
possible to reach the absorbing state from any transient
state in a finite number of steps.

As the number of stages approaches infinity in a finite
absorbing chain, the probability of being in a non-
absorbing state approaches 0 (Grinstead and Snell,
1997, p. 417) e which in our case, with only one
absorbing state, means that the probability of reaching
the absorbing state approaches one. Therefore, for any
number p of pecunioneimpecunion pairs, the probabil-
ity of a pecunion and an impecunion annihilating ap-
proaches 1 as the number of stages approaches infinity.
This effectively means that any simulation (which starts
with (xy�1)j pecunioneimpecunion pairs) will eventu-
ally terminate ( pZ 0) with probability 1. ,

Fig. A1. A possible distribution of pecunions (P) and impecunions (I)

on a grid. The arrow shows one of many possible routes for a pecunion

to meet an impecunion.
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