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Abstract: The so-called “Win-Continue, Lose-Reverse” (WCLR) rule is a simple itera-
tive procedure that can be used to choose a value for any numeric variable (e.g. setting a 
price or a production level to maximise profit). The rule dictates that one should evalu-
ate the consequences of the last adjustment made to the value (e.g. an increase or a de-
crease in production), and keep on changing the value in the same direction if the ad-
justment led to an improvement (e.g. if it led to greater profits), or reverse the direction 
of change otherwise. Somewhat surprisingly, this simple rule has been shown to lead to 
collusive outcomes in Cournot oligopolies, even though its application requires no in-
formation whatsoever about the choices made by any competing firms or about their re-
sults.  

In this paper we show that the convergence of the WCLR rule towards collusive out-
comes can be very sensitive to small independent perturbations in the cost functions or 
in the income functions of the firms. These perturbations typically push the process to-
wards the Nash equilibrium of the one-shot game. We also explore the behaviour of 
WCLR against other strategies and demonstrate that WCLR is easily exploitable. We 
then conduct a similar analysis of the WCLR rule in a differentiated Bertrand model, 
where firms compete in prices. As in the Cournot model, our simulations show conver-
gence of WCLR firms to collusive outcomes, high sensitivity to small independent per-
turbations, and vulnerability to be exploited by other strategies. 

Keywords: Cournot, Bertrand, duopoly, oligopoly, Win-Continue, Lose-Reverse, 
collusion, differentiated, simulation. 

 

1. Introduction and motivation 
It is generally recognised that the actual decision-making processes followed by real-

world firms when they have to set prices or production levels have often little to do with 
those assumed in the idealized analytical framework of perfect information1. In practice, 
the use of simple revisable strategies, imitation tactics and rules of thumb seems to be a 
key ingredient in many decision processes.  

Thus, when examining a market, the behaviour of its participants, and the resulting 
emergent dynamics, it seems valuable to complement the perfect-information analysis 
with studies that also consider decision procedures that enjoy greater empirical support 

1 This statement does not necessarily imply that market predictions made using the perfect-information 
model are irrelevant in real life; the famous “as if” theory of Friedman (1953) proves sufficiently accurate 
and useful in many contexts. 
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and which may be deemed plausible for the context at hand (Kimbrough and Murphy, 
2009).  

This point is particularly relevant in markets potentially subject to regulation (e.g. 
oligopolies) and in situations where the perfect-information theoretical analysis of the 
social interaction reveals the presence of multiple possible equilibria –as is often the 
case in indefinitely repeated strategic interactions, including oligopolies in particular. 
Consequently, several different rules for setting prices or production levels in oligopo-
lies have been analyzed. Bigoni and Fort (2013) provide a recent review of the theoreti-
cal and experimental literature on learning in oligopolies.  

In this paper we analyse two types of oligopolies: one where firms compete in quanti-
ties (a la Cournot), and another where firms compete in prices (a la Bertrand). In both 
cases, we consider that the market process advances in discrete time steps and at every 
time step the companies have to simultaneously choose whether to increase or decrease 
the value of their decision variable (i.e. quantities qi in the Cournot oligopoly, and prices 
pi in the Bertrand oligopoly). The decision rule considered here can be simply stated as: 
repeat your last action (i.e. an increase or a decrease in your decision variable) if your 
profits have grown; otherwise, choose the opposite action. This simple rule has been 
named “Win-Continue, Lose-Reverse” (WCLR) by Huck et al. (2003)2, who conducted 
a thorough study of its convergence properties in symmetric Cournot oligopolies. 

The WCLR rule adjusts the level of the decision variable in the direction that is ex-
pected to make profits grow, according to the observed effect on profits of the last in-
crement/decrement. Note that this gradual adjustment strategy can be considered a type 
of reinforcement learning rule: an action (i.e. an increase or decrease in production or 
price) is deemed satisfactory –and therefore repeated– if it provides a profit boost, and it 
is considered unsatisfactory –and therefore avoided– otherwise (Izquierdo and 
Izquierdo, 2012). 

Mathematically, the WCLR strategy presents some similarities with a gradient ascent 
optimization method. In fact, if the profits of a company were to depend only on its own 
price or level of production (as in a monopoly with stable demand and costs), this rule 
would basically be a gradient ascent method and, under conditions that are well known 
in the optimization literature (Snyman, 2005), it would lead to the vicinity of a local op-
timum. In a duopoly, however, the profits of a company depend on its competitor’s 
price or output level, and the application of the WCLR rule by each of the companies 
independently does not constitute a gradient ascent method for the joint profit of the two 
companies. Thus, it is interesting to study to which reference point of the strategic game 
(e.g. collusive outcome, competitive outcome, or one-shot Nash equilibrium) such a 
simple strategy converges, if it does converge to any at all.  

For a Cournot duopoly in which companies vary their production levels qi by a prede-
fined amount δ (step size), Huck et al. (2003) show that, under rather general condi-
tions, the quantities qi converge for low values of δ to a small area around the coopera-
tive (collusive) solution. Friedman et al. (in press) have recently proposed a slightly 
modified version of WCLR to explain experimental data from the lab and they also 
prove that their WCLR version converges to the collusive solution. 

2 The same authors use the name “trial and error” in Huck et al. (2004), where they also present and 
discuss this learning rule in a discrete-time setup, though the analysis in that paper is focused on a con-
tinuous version of the process. 
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In this paper, we show that the convergence of the WCLR rule to collusive outcomes 
is not robust to small independent perturbations in the profit functions of the firms (e.g., 
small independent variations in the cost functions, or small differences on the price re-
ceived by each company). The existence of such small independent perturbations tends 
to push the process towards the Nash equilibrium of the one-shot game. We also explore 
the behaviour of WCLR against other strategies and demonstrate that WCLR is easily 
exploitable. Finally, we show that all these results extend to duopolies a la Bertrand 
with differentiated product, where firms compete in prices rather than in quantities. 

The structure of the remaining of the paper is very simple: in section 2 we present and 
discuss the results for the Cournot model, and in section 3 we show that the obtained re-
sults also apply to duopolies a la Bertrand. Section 4 ends with the conclusions. 

2. Competition in quantities: Cournot model 
In this section we analyse a Cournot duopoly in which at every time step t (t = 0, 1, 

…) each company i (i = 1, 2) chooses a production level or quantity [qi]t. The market 
price [p]t is the same for both companies and it depends on the total quantity produced 
by the two firms. The amount [qi]t is produced on period t with a cost function C(q). 
The profit for each company on period t is [πi]t = [p]t ∙ [qi]t – C([qi]t). Incremental val-
ues are naturally defined as [∆πi]t ≡ [πi]t – [πi]t-1, for t > 0, and initial values at time step 
0 are [∆πi]0 = 0, and [∆qi]0 = 0. 

Let us also define [si]t ≡ sign ([∆qi]t ∙ [∆πi]t). Note that [si]t is equal to +1 if the last 
changes in [qi]t and [πi]t took place in the same direction, and [si]t is equal to –1 if such 
changes went in opposite directions. 

For each company i, the production levels are calculated as [qi]t+1 = max([qi]t + 
[∆qi]t+1, 0), starting with some initial positive production level [qi]0 at time step 0. The 
decision rule WCLR used to calculate the production increments [∆qi]t+1 is implemented 
as follows: 

WCLR Rule:  
- If t = 0 or [si]t = 0, then [∆qi]t+1 takes one random value out of the set {–δi, 0, δi}, 

where δi is the step size.  

- Otherwise, [∆qi]t+1 = δi ∙ [si]t. 

It is also assumed that the process includes some “noise” such that, with a small 
probability ε for each company in every period, the company will deviate from the value 
prescribed above for [∆qi]t+1 and will take a random choice out of the set {–δi, 0, δi}. 
This “decision noise” can represent occasional mistakes or experimentation.  

Huck et al. (2003) prove that, with δi = δ, under rather general conditions, if the step 
size δ and the noise level ε are sufficiently small (but strictly positive), in the long run 
the process [q1, q2]t will spend most of the time in a small neighbourhood around the 
collusive outcome, and their simulations show a quick convergence to that situation. 
The remaining of this section is devoted to show that this convergence can be very sen-
sitive to small independent perturbations in the profit functions of the firms. The reader 
can run all the simulations reported here using the online model at 
http://luis.izqui.org/models/wc-lr-cournot/. The computer model has been implemented 
in NetLogo (Wilensky, 1999). 
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2.1 The WCLR rule in the Cournot model with noise 
For illustrative purposes we consider a linear inverse demand function: p = max(100 

– (q1 + q2), 0) and a quadratic cost function: C[q] = 10q + 0.1q2. In this situation, the 
collusive value for the production of each company, characterized by the first-order 
conditions 𝜕(𝜋1+𝜋2)

𝜕𝑞𝑖
= 0, is qi = 21.43, which corresponds to a price level p = 57.14. The 

Cournot equilibrium, characterized by the equations 𝜕𝜋𝑖
𝜕𝑞𝑖

= 0, is qi = 28.13, correspond-
ing to a price level p = 43.75.  

We also set δi = 0.1 and ε = 0.01. Initial levels of production [qi]0 are set randomly in 
the range [0, 50], but note that the model is ergodic (since ε > 0); thus, its long-run be-
haviour does not depend on initial conditions.  

Departing from the baseline scenario above, we study the sensitivity of the model to 
three types of noise: 

1. “Decision noise”, characterised by the parameter ε, as described above. 

2. “Cost noise”, characterised by the parameter εcost , and implemented by altering 
each firm’s base cost according to the following formula: 

Ci[qi] = (10qi + 0.1qi
2) ∙ (1 + εcost ∙Ui [–1,1]) 

where Ui[–1,1] denotes a continuous uniform random variable with range [–1,1]. 

3. “Price noise”, characterised by the parameter εprice , and implemented by giving 
each firm i a price pi according to the following formula: 

pi = p ∙ (1 + εprice∙Ui [–1,1]) 

where p is the price that corresponds to the total level of output using the inverse de-
mand function. This modified model represents small differences in the price that each 
company gets for its products, which can be due to a number of different reasons, such 
as random deviations in the quality of the products of a company with respect to the av-
erage quality, different times of arrival at the market (which would allow for some vari-
ability in demand), different intermediaries with variable commissions, existence of lo-
cal markets (which would allow for some variability in price), etc. 

Fig. 1 below shows a representative run for each of the three types of noise3. In the 
absence of cost noise or price noise, the WCLR rule leads to a narrow area around the 
collusive outcome, as already shown by Huck et al. (2003). In stark contrast, small in-
dependent perturbations in the cost function or in the price function seem to destabilise 
the collusive outcome and push the simulation towards the Cournot equilibrium. The 
sensitivity of the model to perturbations in price seems to be greater than the sensitivity 
to perturbations in cost. This is possibly not surprising, given that, if income is greater 
than cost (as in the simulations shown below), a 1% variation in income (or price) has a 
greater effect on profit than a 1% variation in cost. The sensitivity to prices and costs 
can be shown to be basically the same when income and cost are approximately equal 
(Izquierdo and Izquierdo, 2015).  

 

3 Note that the simulation runs with “cost noise” or “price noise” have ε = 0.01 too, as prescribed in the 
baseline scenario. 
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Fig. 1. Density Histograms of the quantities produced by each firm [q1, q2] in one representative simulation run 
of 100 000 time steps. The left-most histogram shows a baseline scenario. The histogram in the centre corre-
sponds to a simulation run with a 1% cost noise added to the baseline scenario, whilst the right-most histo-
gram shows a simulation run with a 1% price noise added to the baseline scenario 

To study this effect rigorously, we conducted a computational experiment where we 
explored different values of ε, εcost, and εprice. For each value of these variables we con-
ducted 100 simulation runs, and for each of the runs we computed the average price in 
the simulation (taken over 105 time steps, and neglecting the first 104 time steps). Fig. 2, 
Fig. 3 and Fig. 4 below show the results obtained.  

 
Fig. 2. The blue diamonds show, for each value of the probability of a random decision ε, the mean of 100 
prices obtained from 100 independent simulation runs otherwise parameterised as in the baseline case. The 
price obtained from each simulation run is the average price in that simulation (taken over 105 time steps, and 
neglecting the first 104 time steps). The difference between the minimum average price and the maximum av-
erage price across simulations was less than 0.1 in all cases 

Fig. 2 shows that the WCLR rule leads to collusive outcomes even if the probability 
of a random decision is fairly high. Fig. 3, in contrast, shows that small perturbations in 
the cost functions of the firms destabilise the collusive outcome and push the process 
towards the Cournot-Nash equilibrium of the one-shot game. In the same spirit, Fig. 4 
shows that the sensitivity of the model to small perturbations in prices is even higher, 
and the collusive outcome is completely destabilised in favour of the Cournot-Nash 
equilibrium for values of the price noise as low as 1%. The same qualitative results are 
obtained with other noise distributions (see Izquierdo and Izquierdo (2015) for experi-
ments with the normal distribution). 

 



6  

 

Fig. 3. The blue diamonds show, for each value of the cost noise parameter εcost, the mean of 100 prices ob-
tained from 100 independent simulation runs otherwise parameterised as in the baseline. The price obtained 
from each simulation run is the average price in that simulation (taken over 105 time steps, and neglecting the 
first 104 time steps). The dashed lines join the minimum average prices and the maximum average prices 
across simulations 

 

Fig. 4. The blue diamonds show, for each value of the price noise parameter εprice, the mean of 100 prices ob-
tained from 100 independent simulation runs otherwise parameterised as in the baseline. The price obtained 
from each simulation run is the average price in that simulation (taken over 105 time steps, and neglecting the 
first 104 time steps). The dashed lines join the minimum average prices and the maximum average prices 
across simulations 

Why is the WCLR rule so robust to “decision noise”, but so sensitive to “cost noise” 
and “price noise”? The answer lies in the fact that these noises produce perturbations 
that are fundamentally different in nature, in magnitude and in frequency. 

Before analysing these three aspects in detail, it is important to understand why the 
collusive outcome is destabilised. The stability of the collusive outcome induced by the 
WCLR rule relies on a very specific sequence of coordinated moves conducted by the 
WCLR firms. Such deterministic pattern of moves is thoroughly described and analysed 
by Huck et al. (2003). For our purposes, it suffices to understand that this deterministic 
pattern of moves on which collusion depends is executed by the WCLR firms with ex-
quisite precision and synchrony, like a clockwork dance (as long as there is no noise, 
naturally). We argue below that if such particular pattern of deterministic moves is bro-
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ken with some stochasticity, WCLR firms, individually, behave more like maximizers 
(recall that, after all, WCLR is a gradient optimization method) and, as such, they tend 
to best respond to each other, i.e. approach Cournot-Nash. The intuition behind this ar-
gument is illustrated in Fig. 5 below. 

 
Fig. 5. The graph shows the quantities chosen by a WCLR firm playing against strategy NOISY FIX.  The blue 
diamonds show, for each value of the mean quantity � produced by NOISY FIX, the average of 100 quantities 
obtained from 100 independent simulation runs otherwise parameterised as in the baseline. Standard errors 
are below 2.5·10-4 in all cases. The quantity obtained from each simulation run is the average quantity in that 
simulation (taken over 105 time steps, and neglecting the first 104 time steps). The dashed lines join the mini-
mum quantities (red triangles) and the maximum quantities (green triangles) observed across all simulations 
and across all time steps (neglecting the first 104 time steps) for each value of � . The reaction curve is drawn as 
a solid black line. 

Fig. 5 shows the quantities chosen by a WCLR firm playing against a strategy that we 
call NOISY FIX. NOISY FIX produces one of three possible quantities {�-�, �, �+�} 
with equal probability in each time step. The environment is otherwise parameterised as 
in the baseline scenario. Fig. 5 also shows the reaction curve of WCLR as a function of 
the mean quantity � produced by NOISY FIX. It is clear that WCLR is able to best re-
spond to NOISY FIX.4 This suggests that in a noisy environment such that firms end up 
varying their production level around any certain quantity somewhat randomly (as op-
posed to following a deterministic pattern), WCLR firms will tend to best respond to 
each other and thus, they will tend to approach the Cournot-Nash equilibrium. 

The following explains why, in general, “cost noise” and “price noise” have a much 
greater potential to break the deterministic so-called clockwork dance than “decision 
noise”. Because of that, they are more effective in pushing the dynamics away from col-
lusion, and in leading them towards the Cournot-Nash equilibrium within a wide pa-
rameter range. 

Let us first examine the effect of “decision noise”. Note that this type of noise may 
affect a firm’s decision only with a small probability ε, i.e. in most time steps “decision 
noise” has no influence whatsoever on the dynamics of the model. Whenever this type 

4 Note that WCLR is also able to best respond to strategy FIX, who always sets the same fixed quanti-
ty.  
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of noise does change a firm’s decision (i.e. it alters the clockwork dance), it has an im-
pact only on the decision at the time step at which it occurs and, as proved by Huck et 
al. (2003), the process goes back towards collusion automatically in two time steps. 
This explains why the collusive outcome is so robust to “decision noise”. The clock-
work dance gets altered only sporadically, and when it does, it is fully restored in two 
time steps. 

By contrast, “cost noise” and “price noise” occur more frequently and their effect on 
the model is fundamentally different from that induced by “decision noise”. As for fre-
quency, note that both “cost noise” and “price noise” affect firms’ profits every single 
time step regardless of the magnitude of εcost or εprice (as long as they are positive), but 
these noises may not alter firms’ decisions. The change in profit caused by either of 
these noises will make a firm switch its decision if and only if the change is sufficiently 
large as to modify the sign of ∆𝜋. Intuitively, this requirement means that perturbations 
in prices or in costs have an impact on profits that is at least comparable to the changes 
in profits caused by one-time-step adjustments in production.   

To formally understand the circumstances under which such a requirement may be 
fulfilled, let us compare the change in profit in one time step in the absence of noise 
∆0𝜋, with the one-time-step change in profit strictly induced by the presence of noise 
∆𝜀𝜋. To be clear, in a model with noise, the total change in profit ∆𝜋 would be ∆𝜋 =
∆0𝜋 + ∆𝜀𝜋. We compute these quantities below: 

∆0𝜋 = 𝑝𝑞 − 𝐶[𝑞] − (𝑝0𝑞0 − 𝐶0[𝑞0]) 

∆𝜀𝑐𝑜𝑠𝑡𝜋 = 𝑝𝑞 − 𝐶[𝑞] ∙ (1 + 𝜀𝑐𝑜𝑠𝑡 ∙ U[−1,1]) − (𝑝𝑞 − 𝐶[𝑞]) = 𝐶[𝑞] ∙ 𝜀𝑐𝑜𝑠𝑡 ∙ U[−1,1] 

∆𝜀𝑝𝑟𝑖𝑐𝑒𝜋 = 𝑝𝑞�1 + 𝜀𝑝𝑟𝑖𝑐𝑒 ∙ U[−1,1]� − 𝐶[𝑞] − (𝑝𝑞 − 𝐶[𝑞]) = 𝑝𝑞 ∙ 𝜀𝑝𝑟𝑖𝑐𝑒 ∙ U[−1,1] 

where variables with sub index 0 refer to the initial point, whilst 𝑝 and 𝑞 refer to the 
price and the quantity at the final point. To appreciate the relative order of magnitude in 
a particular setting of the profit increments defined above, we compute them for our 
baseline scenario. In our setting, at the collusive outcome, we have |∆0𝜋| < 4.3 for 
𝛿 = 0.1, and |∆0𝜋| < 0.43 for 𝛿 = 0.01, whilst ∆𝜀𝑐𝑜𝑠𝑡𝜋 = 260.2 ∙ 𝜀𝑐𝑜𝑠𝑡 ∙ U[−1,1] and 
∆𝜀𝑝𝑟𝑖𝑐𝑒𝜋 = 1224.5 ∙ 𝜀𝑝𝑟𝑖𝑐𝑒 ∙ U[−1,1]. This shows that, if step sizes are not too large, 
both cost and price noise have great potential to frequently change a firm’s decision 
(and thus break the clockwork dance). In other words, the noise-to-signal ratio ∆𝜀𝜋/∆0𝜋 
can naturally be very large, considering the effect (on profit) of cost or price variations 
as the noise, and the effect induced by one-step quantity increments as the signal. A 
large noise-to-signal ratio means that a great amount of stochasticity is introduced in the 
model. 

In more general terms, note that –assuming the profit function is continuous– the one-
time-step change in profit caused by adjustments in production ∆0𝜋 becomes vanish-
ingly small as the step size goes to zero, i.e. lim𝛿→0 ∆0𝜋 = 0.5 In contrast, note that nei-
ther ∆𝜀𝑐𝑜𝑠𝑡𝜋 nor ∆𝜀𝑝𝑟𝑖𝑐𝑒𝜋 approach zero as 𝛿 goes to zero. This effectively means that, as 
the step size 𝛿 gets smaller, the potential of “cost noise” and “price noise” to change 
firms’ decisions –and thus affect the dynamics of the model– becomes greater, regard-
less of the shape of the demand or the cost functions. This fact is illustrated in Fig. 6 be-
low. 

5 In our setting, noting that 𝑝 = 𝑝0 + {−2𝛿,−𝛿, 0, 𝛿, 2𝛿} and 𝑞 = 𝑞0 + {−𝛿, 0, 𝛿}, it is possible to de-
rive the following bound: |∆0𝜋| ≤ (|𝑝0 − 10| + 2.2𝑞0 + 2.1𝛿) ∙ 𝛿. 
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Fig. 6. The diamonds show, for different values of the step size, the average prices obtained with decision noise 
ε = 1% only (green), with cost noise εcost = 1% added (blue) and with price noise εprice = 1% added (red). Simu-
lation runs have been otherwise parameterised as in the baseline. The price obtained from each simulation run 
is the average price in that simulation (taken over 105 time steps, and neglecting the first 105 time steps). Each 
diamond represents the average of 100 independent simulation runs. All standard errors are below 0.12. The 
collusive price and the Cournot price are also included (solid black lines) as a reference 

Finally, there is yet another key difference between the three types of noise. Note 
that “decision noise” does not affect the profit landscape (i.e. the function that maps 
quantities to profit). This is crucial because the stability of the collusive outcome in-
duced by the WCLR rule relies on a steady profit landscape. To be clear, Huck et al. 
(2003) prove and explain that, in a steady profit landscape, following any variation in 
the quantities chosen by the firms, the WCLR rule induces, after at most two time steps, 
a sequence of moves leading towards the collusive outcome. “Decision noise” breaks 
the clockwork dance at the particular time steps when it alters a firm’s decision (an 
event that occurs with small probability) but, in at most two periods after such a pertur-
bation, the firms are engaged again in a series of coordinated and perfectly synchronized 
moves towards or around collusion. In contrast, “cost noise” and “price noise” do shake 
the profit landscape back and forth every time step, altering the relation between [∆qi]t 
and [∆πi]t not only in the current period but also in the following one (since [πi]t is used 
in the computation of both [∆πi]t and [∆πi]t+1). Because of this, every single perturbation 
does not only have the potential to affect the decision at the time step it occurs, but it 
can also have an direct impact on subsequent decisions. This deeper type of alteration, 
which transcends the time step at which it occurs, constitutes a greater source of misco-
ordination that can further disturb the clockwork dance on which the stability of the col-
lusive outcome relies. 

2.2 Correlated perturbations 
In this section, we show that the destabilizing factor of the variability in cost or price 

is not so much the existence of the perturbations, but the fact that they are somewhat in-
dependent or uncorrelated between the firms. To illustrate this, here we consider the ef-
fect of correlated perturbations. Correlations would be observed in the real world if 
there were variations in costs or in the demand function that affected both companies in 
a similar way (for instance, seasonal demand variability). To study such situations, we 
model a price perturbation for each firm which is composed of both a common factor 
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α·U[–1,1] –with weight α– and an independent factor (1 – α)·Ui[–1,1] –with weight  
(1 – α)–, according to the formula:  

pi = p ∙ (1 + εprice∙ Rα
i) 

where   

Rα
i = α·U[–1,1] + (1 – α)·Ui[–1,1]. 

Thus, parameter α is a measure of the correlation between the perturbations of each 
firm. Extreme value α = 0 represents completely uncorrelated perturbations (as analyzed 
above), and extreme value α = 1 represents full correlation (where the perturbations for 
each firm are exactly the same). Fig. 7 below shows that the more correlated perturba-
tions are, the less impact they have on destabilising the collusive outcome. As explained 
before, perturbations affect the dynamics of the model mainly through the generation of 
miscoordination that breaks the clockwork dance played by the firms; thus, it is natural 
that the impact of correlated noise, which does not cause so much miscoordination, is 
less acute than the effect of uncorrelated perturbations.   

 
Fig. 7. The diamonds show, for each value of the price noise parameter εprice and different values of α, the mean 
of 100 prices obtained from 100 independent simulation runs otherwise parameterised as in the baseline. The 
price obtained from each simulation run is the average price in that simulation (taken over 105 time steps, and 
neglecting the first 104 time steps) 

2.3 More than two competing firms 
The simulation results of Huck et al. (2003) in symmetric oligopolies with more than 

two competing firms (up to ten) and some small decision noise also showed conver-
gence of the WCLR rule to collusive outcomes. We show in Fig. 8 below that, as in the 
duopoly case, the existence of small independent perturbations in the price that each 
company obtains also destabilises the collusive outcome and pushes the process towards 
the Nash equilibrium of the one-shot game. Uncorrelated perturbations in cost have the 
same qualitative effect, so they are not shown here.  
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Fig. 8. The blue diamonds show, for each value of the price noise parameter εprice, the mean of 100 prices ob-
tained from 100 independent simulation runs otherwise parameterised as in the baseline, in an oligopoly with 5 
competing firms. The price obtained from each simulation run is the average price in that simulation (taken 
over 105 time steps, and neglecting the first 104 time steps). The dashed lines join the minimum average prices 
and the maximum average prices across simulations 

It should also be noted that, as the number of competing firms increase, the one-shot 
Cournot-Nash equilibrium gets closer to the outcome predicted under the assumption of 
perfect competition, so, as the number of firms increase, the WCLR rule with independ-
ent cost or price perturbations leads to market prices and production levels which ap-
proach those predicted by the perfect competition theory. Fig. 9 below shows the effect 
of uncorrelated 2% price perturbations in oligopolies with different number of firms. 
The results also show an increasing difference between the simulated price and the 
Cournot price as the number of firms in the market increases, which may be due to the 
decreasing marginal importance of one firm in the market as the number of firms in the 
market increases.  

 
Fig. 9. The diamonds show, for a price noise parameter εprice = 2% and different number of firms, the mean of 
100 prices obtained from 100 independent simulation runs otherwise parameterised as in the baseline. The 
price obtained from each simulation run is the average price in that simulation (taken over 105 time steps, and 
neglecting the first 104 time steps) 

2.4 Better responses and exploitability of WCLR 
This section addresses two related (but distinct) questions:  
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a) Is WCLR an optimal response to itself?  

b) Is WCLR generally able to respond optimally to other strategies?  

The answer to both questions is negative. 

Let us start with a simple observation which shows that, in general, WCLR is not a 
best response to itself. Consider the strategy FIX, which simply chooses a production 
level and keeps it fixed. Strategy FIX will make a WCLR player move towards its reac-
tion curve. Consequently, FIX can choose the quantity corresponding to the first mover 
of the Stackelberg game, and (assuming a small step size for the WCLR player) it will 
approximately obtain the corresponding profit, which can be greater than the collusive 
profit.6 Thus, it is clear that, in general, WCLR is not a best response to itself.  

To illustrate the fact that WCLR does not generally respond optimally to other strate-
gies either, we need to consider strategies slightly more sophisticated than FIX, i.e. 
strategies that can set different quantities at different time steps. Incidentally, the fol-
lowing analysis will also serve as a second illustration of the fact that there are strate-
gies that can perform better against WCLR than WCLR itself.  

Let us focus on the set of strategies that can end up in a cycle containing 3 distinct 
points when playing against WCLR (assuming no noise). To be clear, we will consider 
a strategy –henceforth called MAXIMIZER– which, playing against WCLR, can indef-
initely cycle through 3 points (1; 2; 3), where MAXIMIZER chooses quantities 
(𝑞1𝑀; 𝑞2𝑀;  𝑞3𝑀) respectively and WCLR chooses quantities (𝑞1𝑊;𝑞2𝑊;  𝑞3𝑊) respectively. 
The actual sequence in the cycle played by MAXIMIZER and WCLR will be 
1,2,1,3;1,2,1,3;1,2,1,3;… The quantities chosen by each strategy in the cycle are defined 
as the solution of the following constrained optimization problem: 

𝑀𝑎𝑥�𝑞𝑖𝑀;𝑞𝑖
𝑊�𝑖=1,2,3

2 ∙ 𝜋𝑀[𝑝1, 𝑞1𝑀] + 𝜋𝑀[𝑝2, 𝑞2𝑀] + 𝜋𝑀[𝑝3, 𝑞3𝑀] 

Subject to: 

𝜋𝑊[𝑝2, 𝑞2𝑊] < 𝜋𝑊[𝑝1, 𝑞1𝑊];  𝑞2𝑊 = 𝑞1𝑊 + 𝛿; 

𝜋𝑊[𝑝3, 𝑞3𝑊] < 𝜋𝑊[𝑝1, 𝑞3𝑊];  𝑞3𝑊 = 𝑞1𝑊 − 𝛿; 

𝑝𝑖 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐷𝑒𝑚𝑎𝑛𝑑[𝑞𝑖𝑊 + 𝑞𝑖𝑀]; 𝑞𝑖𝑀 ≥ 0; 𝑞𝑖𝑊 ≥ 0; 𝑝𝑖 ≥ 0;   𝑖 = 1,2,3. 
where super index M refers to variables concerning MAXIMIZER, whilst super index 
W refers to variables concerning strategy WCLR. Getting WCLR into the cycle de-
scribed above from any initial condition is unproblematic as long as 𝑞1𝑊 lies in WCLR’s 
reaction curve.7 

Fig. 10 below shows that MAXIMIZER can obtain profits very close to monopolistic 
profits and is able to effectively push WCLR out of the market8 when playing the 
aforementioned cycle against WCLR. It is also clear that WCLR is not responding op-

6 The baseline scenario is an example where Stackelberg’s first-mover profit is not greater than the col-
lusive profit; however, if the demand function is changed to be p = max(100 – (q1 + q2)2, 0), then 
Stackelberg’s first-mover profit is indeed greater than the collusive profit. 

7 For the sake of clarity, we are ignoring the fact that, strictly speaking, the difference between 
WCLR’s initial quantity and 𝑞1𝑊 should be a multiple of 𝛿. If this were not the case, the optimization 
problem should be formulated in discrete terms. 

8 In all points shown in Fig. 11, WCLR is obtaining small but strictly positive profits. 
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timally to MAXIMIZER. To see this, consider strategy OPTIMAL, which reacts opti-
mally to each quantity 𝑞𝑖𝑀 that MAXIMIZER sets in the cycle. Fig. 10 shows that the 
profits obtained by OPTIMAL against MAXIMIZER are clearly higher than those ob-
tained by WCLR against MAXIMIZER. 

 
Fig. 10. For the baseline parameterisation without noise, and different step sizes for the WCLR firm, the 
graph shows the average (per-period) profit of MAXIMIZER against WCLR (red squares), the average (per-
period) profit of strategy WCLR against MAXIMIZER (blue diamonds), and the average (per-period) profit 
of strategy OPTIMAL against MAXIMIZER (green triangles) in the type of cycle described in the main text. 
The monopolistic profit (solid black line) and the collusive profit (dashed black line) are also included as a ref-
erence 

Thus, it is clear that WCLR is not generally an optimal response to itself (e.g. 
MAXIMIZER is definitely better) and that WCLR is generally not able to respond op-
timally to other strategies (like e.g. MAXIMIZER). 

Interestingly, WCLR itself can exploit other WCLRs that play with smaller step sizes. 
This is clearly illustrated in the leftmost part of Fig. 11 below, where it is shown that a 
WCLR player with step size  δ1 = 0.1 can obtain profits close to monopolistic against a 
WCLR firm with step size δ2 = 0.001. 

 
Fig. 11. The red diamonds show the average profit of WCLR firm 1 (with step size δ1 = 0.1) and the blue dia-
monds show the average profit of WCLR firm 2 (with step size δ2) when playing against each other, for differ-
ent step sizes δ2 for WCLR firm 2. The profits shown for each value of δ2 are the averages of 100 profits ob-
tained from 100 independent simulation runs otherwise parameterised as in the baseline. The profit obtained 
from each simulation run for each firm is the average profit in that simulation taken over 105 time steps and 
neglecting the first 105 time steps. Standard errors are below 0.25 in all cases. The monopolistic profit (solid 
black line) and the collusive profit (dashed black line) are also included as a reference 
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3. Competition in prices: Duopoly with differentiated products 
In this section, we explore the behaviour of the WCLR rule in a (Bertrand-like) du-

opoly with differentiated products, in which the decision variable is the price level, and 
where each company faces a demand function that depends on both its price and its 
competitor’s.  

The considered model is a duopoly in which at every time step t (t = 0, 1, …) each 
company i (i = 1, 2) chooses a price level [pi]t. Each company faces a market demand 
[qi]t which depends on the prices chosen by both companies. The amount [qi]t is pro-
duced on period t with a cost function C(q). The profit for each company on period t is 
[πi]t = [pi]t ∙ [qi]t – C([qi]t). Incremental values are naturally defined as [∆πi]t ≡ [πi]t – 
[πi]t-1, and initial values at time step 0 are [∆πi]0 = 0, and [∆pi]0 = 0. 

Similarly to the Cournot model, let us define [si]t ≡ sign ([∆pi]t ∙ [∆πi]t). Note that [si]t 
is equal to +1 if the last changes in [pi]t and [πi]t took place in the same direction, and 
[si]t is equal to –1 if such changes went in opposite directions. 

For each company i, the price levels are calculated as [pi]t+1 = max([pi]t + [∆pi]t+1, 
pmin), starting with some initial positive price level [pi]0 at the initial time step9. The de-
cision rule WCLR used to calculate the price increments [∆pi]t+1 is implemented as fol-
lows: 

WCLR Rule:  
- If t = 0 or [si]t = 0, then [∆pi]t+1 takes one random value out of the set {–δi, 0, δi}, 

where δi is the step size.  

- Otherwise, [∆pi]t+1 = δi ∙ [si]t. 

The boundary situation where the firm is not selling anything ([qi]t = 0) is taken into 
account by making such a firm reduce its price ([∆pi]t+1 = –δi). It is also assumed that 
the process includes some “noise” such that, with a small probability ε for each com-
pany in every period, the company will deviate from the value prescribed above for 
[∆pi]t+1 and will take a random choice among {–δi, 0, δi}. This “Decision noise” can 
represent occasional mistakes or experimentation.  

In the following section, we show by means of simulation that, similarly to the Cour-
not case, with δi = δ, if the step size δ and the noise level ε are small, the process [p1, p2]t 
quickly converges to a small neighbourhood around the collusive outcome, and tends to 
remain on that area. We also show, however, that this convergence can be very sensitive 
to small independent perturbations in the profit functions of the firms. The reader can 
run all the simulations reported here using the online model at 
http://luis.izqui.org/models/wc-lr-bertrand/. The computer model has been implemented 
in NetLogo (Wilensky, 1999). 

3.1 The WCLR rule in Bertrand competition with differentiated products 
As in the analysis of the Cournot model, we focus here on concrete representative ex-

amples for illustrative purposes. In particular, our baseline scenario for Bertrand compe-
tition will use the quadratic cost function C[q] = 10q + 0.1q2 and the symmetric linear 
demand functions: qi = max( 100 – pi + 0.5 pj , 0), i ≠ j.  

9 The minimum price pmin is included to ensure that firms do not sell below their minimum marginal 
cost. 
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The reference theoretical points for this model are the competitive outcome (pi = 
27.27), characterized by the equations
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A parallelism with the Cournot case (Huck et al., 2003), extended to allow for differ-
ent step sizes, would lead to a reference theoretical point for the WCLR rule at a point 
characterised by the equations 
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∂ ππ for p1 = p2) and with equal step size δ1 = δ2, coincides with the collusive solu-

tion.  

As a baseline scenario, we set δi = 0.1 and ε = 0.01. Initial prices [pi]0 are set ran-
domly in the range [0, 100], but note that the model is ergodic (since ε > 0); thus, its 
long-run behaviour does not depend on initial conditions. Departing from this baseline 
scenario, we also consider here a “Cost noise”, characterised by the parameter εcost, and 
a “Demand noise”, characterised by the parameter εdemand. To be clear, the introduction 
of noise modifies the cost function and the demand functions in the following way:  

Ci[qi] = (10qi + 0.1qi
2) ∙ (1 + εcost ∙Ui[–1,1]) 

qi = max( (100 – pi + 0.5 pj ) (1 + εdemand ∙Ui[–1,1]) , 0) i ≠ j 
Fig. 12 below shows a representative run for each of the three types of noise10. It in-

dicates that the same patterns that apply to the Cournot model seem to apply also to the 
WCLR rule in this price-setting duopoly: convergence to an area around the collusive 
outcome if there are no independent perturbations (other than “decision noise”), and 
displacement towards the one-shot Nash equilibrium if there are (small) independent 
perturbations in demand or in costs. Just like in the Cournot model, the sensitivity of the 
model to perturbations in demand seems to be greater than its sensitivity to perturba-
tions in costs. This is due to the same reason explained before: income is significantly 
greater than cost for both firms in the region of interest, so a certain percentage change 
in demand (and, therefore, in income) induces a greater change in profit than the same 
percentage change in costs. Consequently, under such positive-profit circumstances, 
demand variability constitutes a greater source of miscoordination than cost variability, 
and it therefore affects the dynamics of the model more strongly. The reader can use the 
online model to confirm that if fixed costs are chosen to make income and cost similar 
in magnitude, then the sensitivity of the model to these two types of noise –“demand 
noise” and “cost noise”– is more alike. 

 

10 Note that the simulation runs with “cost noise” or “demand noise” have ε = 0.01 too, as prescribed in 
the baseline scenario. 
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Fig. 12. Density Histograms of the prices set by each firm [p1, p2] in one representative simulation run of 
100 000 time steps in the model with competition in prices. The left-most histogram shows a baseline scenario. 
The histogram in the centre corresponds to a simulation run with a 0.5% cost noise added to the baseline sce-
nario, whilst the right-most histogram shows a simulation run with a 0.5% demand noise added to the baseline 
scenario 

In the same spirit as before, we conducted a computational experiment where we sys-
tematically explored different values of εcost. Fig. 13 below shows that, as anticipated, 
small perturbations in the cost functions of the firms destabilise the collusive outcome 
and push the process towards the Nash equilibrium of the one-shot game. Given the 
symmetry in the simulation setup, we present the average prices of one firm only. 

 
Fig. 13. The blue diamonds show, for each value of the cost noise parameter εcost, the mean of 100 prices ob-
tained from 100 independent simulation runs otherwise parameterised as in the baseline. The price obtained 
from each simulation run is the average price of one of the firms in that simulation (taken over 105 time steps, 
and neglecting the first 104 time steps). The dashed lines join the minimum average prices and the maximum 
average prices across simulations 

3.2 Correlated perturbations 
Finally, to fully understand the mechanism through which demand and cost perturba-

tions affect the dynamics of the WCLR price-setting duopoly with differentiated prod-
ucts, we also include here a parameter α that allows us to modulate the correlation be-
tween the demand perturbations received by each of the firms. Specifically, we model a 
demand perturbation for each firm which is composed of both a common factor α·U[–
1,1] –with weight α– and an independent factor (1 – α)·Ui[–1,1] –with weight (1 – α)–, 
according to the formula:  
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qi = max( (100 – pi + 0.5 pj ) (1 + εdemand ∙ Rα
i) , 0) 

where i ≠ j and 

Rα
i = α·U[–1,1] + (1 – α)·Ui[–1,1]. 

Thus, parameter α is a measure of the correlation between the demand perturbations 
of each firm. Extreme value α = 0 represents completely uncorrelated perturbations, 
whilst extreme value α = 1 represents full correlation between the demand perturbations 
received by each firm (potentially due, for instance, to seasonal demand variability in 
both products, or global factors affecting the demand of both products in the same way). 
Fig. 14 below shows that the more correlated perturbations are, the less impact they 
have on destabilising the collusive outcome. Given the symmetry in the simulation 
setup, we present the average prices of one firm only.  

 
Fig. 14. The diamonds show, for each value of the demand noise parameter εdemand and different values of α, the 
mean of 100 prices obtained from 100 independent simulation runs otherwise parameterised as in the baseline. 
The price obtained from each simulation run is the average price of one of the firms in that simulation (taken 
over 105 time steps, and neglecting the first 104 time steps) 

As explained before, perturbations affect the dynamics of the model mainly through 
the generation of miscoordination between the firms; thus, it is natural that the impact of 
correlated noise, which does not cause so much miscoordination, is less acute than the 
effect of uncorrelated perturbations. 

3.3 Better responses and exploitability of WCLR 
In the same spirit as in section 2.4, we show here that WCLR is not generally an op-

timal response to itself or other strategies in a duopoly a la Bertrand either. For that, we 
also design here a MAXIMIZER strategy which, playing against WCLR without any 
noise, can indefinitely cycle through 3 points (1; 2; 3), where MAXIMIZER chooses 
prices (𝑝1𝑀;𝑝2𝑀;  𝑝3𝑀) respectively and WCLR chooses prices (𝑝1𝑊;𝑝2𝑊;  𝑝3𝑊) respective-
ly. The actual sequence in the cycle played by MAXIMIZER and WCLR will be 
1,2,1,3;1,2,1,3;1,2,1,3…, and the prices chosen by each strategy in the cycle are defined 
as the solution of the following constrained optimization problem: 

𝑀𝑎𝑥�𝑝𝑖𝑀;𝑝𝑖
𝑊�𝑖=1,2,3

2 ∙ 𝜋𝑀[𝑝1𝑀, 𝑞1𝑀] + 𝜋𝑀[𝑝2𝑀, 𝑞2𝑀] + 𝜋𝑀[𝑝3𝑀 , 𝑞3𝑀] 

Subject to: 

𝜋𝑊[𝑝2𝑊, 𝑞2𝑊] < 𝜋𝑊[𝑝1𝑊, 𝑞1𝑊];  𝑝2𝑊 = 𝑝1𝑊 + 𝛿; 
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𝜋𝑊[𝑝3𝑊, 𝑞3𝑊] < 𝜋𝑊[𝑝1𝑊, 𝑞1𝑊];  𝑝3𝑊 = 𝑝1𝑊 − 𝛿; 

𝑞𝑖𝑀 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑀[𝑝𝑖𝑀,𝑝𝑖𝑊]; 𝑞𝑖𝑊 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑊[𝑝𝑖𝑊,𝑝𝑖𝑀];  𝑖 = 1,2,3; 

𝑝𝑖𝑀 ≥ 0; 𝑞𝑖𝑀 ≥ 0; 𝑝𝑖𝑊 ≥ 𝑝𝑚𝑖𝑛[𝑞𝑖𝑊]; 𝑞𝑖𝑊 ≥ 0;   
where super index M refers to variables concerning MAXIMIZER, whilst super index 

W refers to variables concerning strategy WCLR. Getting WCLR into the cycle de-
scribed above from any initial condition is unproblematic as long as 𝑞𝑖𝑊 lies in WCLR’s 
reaction curve. 

Fig. 15 below shows that MAXIMIZER can obtain profits much higher than collusive 
profits and is able to effectively push WCLR out of the market11 when playing against 
WCLR. It is also clear that WCLR is not responding optimally to MAXIMIZER. To see 
this, consider strategy OPTIMAL, which reacts optimally to each price 𝑝𝑖𝑀 that 
MAXIMIZER sets in the cycle. Fig. 15 shows that the average profit obtained by 
OPTIMAL against MAXIMIZER is clearly higher than the average profit obtained by 
WCLR against MAXIMIZER. 

 
Fig. 15. For the baseline parameterisation without noise, and different step sizes for the WCLR firm, the 
graph shows the average (per-period) profit of MAXIMIZER against WCLR (red squares), the average (per-
period) profit of strategy WCLR against MAXIMIZER (blue diamonds), and the average (per-period) profit 
of strategy OPTIMAL against MAXIMIZER (green triangles) in the type of cycle described in the main text. 
The collusive profit (dashed black line) is also included as a reference 

Thus, it is clear that, as in the Cournot case, WCLR is not generally an optimal response 
to itself (e.g. MAXIMIZER is definitely better) and that WCLR is generally not able to 
respond optimally to other strategies (like e.g. MAXIMIZER). Also as in the Cournot 
model, WCLR can exploit other WCLRs that play with smaller step sizes. This is clear-
ly illustrated in Fig. 16 below, where it is shown that the ratio between step sizes needed 
to exploit another WCLR player is smaller in the Bertrand case than in the Cournot 
model (see Fig. 11). 

11 In all points shown in Fig. 16, WCLR is obtaining small but strictly positive profits. 
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Fig. 16. The red diamonds show the average profit of WCLR firm 1 (with step size δ1 = 0.1) and the blue dia-
monds show the average profit of WCLR firm 2 (with step size δ2) when playing against each other, for differ-
ent step sizes δ2 for WCLR firm 2. The profits shown for each value of δ2 are the averages of 100 profits ob-
tained from 100 independent simulation runs otherwise parameterised as in the baseline. The profit obtained 
from each simulation run for each firm is the average profit in that simulation taken over 105 time steps and 
neglecting the first 105 time steps. Standard errors are below 0.2 in all cases. The profits obtained by 
MAXIMIZER against firm 2 (solid black line) and the collusive profit (dashed black line) are also included as 
a reference 

4. Conclusions 
The results obtained by Huck et al. (2003) indicate that the simple, individual, “sensi-

ble” and not forward-looking decision rule WCLR (“Win-Continue, Lose-Reverse”) can 
lead to collusion-like outcomes in Cournot oligopolies, even though each company is 
independently trying to maximize its own profit, and is acting based only on its own 
past information. Similar results were obtained by Waltman and Kaymak (2008) con-
sidering a more involved learning algorithm (Q-learning). In this paper, we have shown 
that the convergence of the WCLR rule to collusion-like outcomes also extends to du-
opolies with differentiated products where firms compete in prices. In principle, these 
results could raise important concerns about the fairness of fining firms in oligopolies 
for apparently carrying out collusive practices, since one could always allege that ob-
served collusion-like outcomes could just be the unintended result of using this type of 
uncoordinated independent (and thus legitimate) decision rule.  

However, this paper has shown that small independent variations in the cost func-
tions, or small uncorrelated perturbations in the price obtained by each firm (in the 
Cournot case) or in the particular demand of each differentiated product (in the Ber-
trand-like case), can all destabilize the convergence of the WCLR rule to collusive out-
comes, pushing the outcomes towards the Nash solution of the one-shot game. Besides, 
previous simulation results (Keen and Standish, 2006) had already indicated that intro-
ducing variability in the step sizes used by each company in each period could also push 
the process towards the Cournot-Nash solution in markets where firms compete in 
quantities, and we observe the same effect in the Bertrand-like case. The convergence of 
the WCLR rule to collusive outcomes also rests on the synchrony or simultaneity of the 
decisions taken by each company; a process in which each company sequentially modi-
fies its decision variable and obtains the market response before the other company has 
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altered its decision would lead again12 to the Nash equilibrium of the one-shot game, 
both in the Cournot and in the Bertrand-like cases. Finally, this paper has also shown 
that the rule WCLR is easily exploitable by unsophisticated strategies in both types of 
oligopoly. 

Consequently, our results throw substantial doubts on the validity of arguments that 
try to justify collusive-like outcomes as the unintended result of firms applying the “in-
nocent-looking” uncoordinated decision rule “Win-Continue, Lose-Reverse”. 
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