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Abstract 

This paper characterises the transient dynamics and the long-term behaviour of a 
game theoretical model where players’ decisions at any particular time are guided 
by a single similar situation they experienced in the past – a simple form of case-
based reasoning. The transient dynamics of the model are very dependent on the 
process by which players learn how to play the game in any given situation. The 
long-run behaviour of the model varies significantly depending on whether players 
can occasionally explore different actions or not. When the probability of experi-
mentation is small but non-zero, only a subset of the outcomes that are possible in 
the absence of experimentation persists in the long-run. In this paper we present 
some features that characterise such a subset of stochastically stable outcomes. 

1 Introduction 

This paper deals with the formal study of social interactions which can be mean-
ingfully modelled as decision problems of strategy and, as such, using game the-
ory as a framework. Game theory is a branch of mathematics devoted to the for-
mal analysis of decision making in social interactions where the outcome depends 
on the decisions made by potentially several individuals. It is a useful framework 
to accurately and formally describe interdependent decision-making processes, 
and it also provides a collection of solution concepts that narrow the set of ex-
pected outcomes in such processes. The most widespread solution concept in 
game theory is the Nash equilibrium, which is a set of strategies, one for each 
player, such that no player, knowing the strategy of the other(s), could improve 
her expected payoff by unilaterally changing her own strategy. 

Though extremely useful, game theory is at present somewhat limited in the 
sense that it is dominated by assumptions of full rationality, it generally ignores 
the dynamics of social processes, and it often requires disturbing and unrealistic 
hypotheses about players’ assumptions on other players’ cognitive capabilities and 
beliefs in order to derive specific predictions. Furthermore it is often the case that 
even with heroic assumptions about the computational power and beliefs that 
every player attributes to every other player, game theory cannot reduce the set of 
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expected outcomes significantly (e.g. consider the Folk Theorem in the repeated 
Prisoner’s Dilemma). 

While acknowledging that the work conducted in game theory up until now has 
been extremely useful, a growing inter-disciplinary community of scientists is 
starting to believe that the time has come to develop game theory past the bounda-
ries of full rationality, common-knowledge of rationality1, consistently aligned be-
liefs (Hargreaves Heap and Varoufakis 1995), static equilibria, and long-term 
convergence. These concerns have led many scientists to develop models of social 
interactions within the framework of game theory but (a) assuming players behave 
in ways that are cognitively more plausible than fully rational behaviour and 
common knowledge of rationality (e.g. assuming players learn from experience), 
and (b) paying special attention to the dynamics of such models and not only to 
their long-term properties. These investigations are being undertaken experimen-
tally and formally (both analytically and using computer simulation), and special 
emphasis is being paid to the study of backward-looking learning algorithms, 
which seem to be more plausible than the forward-looking methods of reasoning 
employed in orthodox game theory. The latter appear to be very demanding for 
human agents (let alone other animals) and remain undefined in the absence of 
strong assumptions about other players’ behaviour and beliefs. 

Some of the decision-making algorithms that have attracted the attention of re-
searchers in game theory are: reinforcement learning (with experimental studies 
conducted by e.g. Erev et al. (1999), theoretical work done by e.g. Bendor et al. 
(2001), and studies of the dynamics carried out by e.g. Macy and Flache (2002)), 
belief learning (with theoretical work on fictitious play developed by e.g. Fuden-
berg and Levine (1998)), the EWA (Experience Weighted Attraction) model 
(Camerer 2003), which is a hybrid of the reinforcement and belief learning, and 
finally, case-based reasoning (Izquierdo et al. 2004). This paper advances the 
work conducted by Izquierdo et al. (2004) on the implications of case-based rea-
soning in strategic contexts. 

In particular, we study the transient and the long-run dynamics of a game theo-
retical model where players’ decisions at any particular time are guided by a sin-
gle similar situation they experienced in the past – a simple form of case-based 
reasoning. It is assumed in this paper that players suffer from trembling hands, i.e. 
they occasionally explore different actions with small probability. These trembles 
make the model slightly more realistic and reduce the set of expected outcomes in 
the long-term. Some outcomes that can be observed infinitely often in the model 
without trembles are not stable in the model with trembles no matter how unlikely 
trembles are as long as they are possible. This is so because the properties of the 
process with trembles when the probability of trembles tends to zero differ from 
those of the process where the probability of trembles is exactly zero. In this paper 
we present some features that characterise the set of outcomes which are stable in 
the presence of small trembles. 

                                                           
1 Common knowledge of rationality means that every player assumes: (a) that all players 

are instrumentally rational, and (b) that all players are aware of other players’ rationality-
related assumptions (this produces an infinite recursion of shared assumptions). 
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2 Case-based reasoning 

Case-Based Reasoning (CBR) arose out of cognitive science research in the late 
1970s (Schank and Abelson 1977; Schank 1982); since then, several psychologi-
cal studies have provided support for its importance as problem-solving process in 
human reasoning, especially for novel or difficult tasks (see Ross (1989) for a 
summary). Case-based reasoning is a form of reasoning by analogy within a par-
ticular domain. It consists of “solving a problem by remembering a previous simi-
lar situation and by reusing information and knowledge of that situation” (Aamodt 
and Plaza 1994). Case-based reasoners do not employ abstract rules as the basis to 
make their decisions, but instead they use similar experiences they have had in the 
past. Such experiences are stored in the form of cases. A case is “a contextualised 
piece of knowledge representing an experience that teaches a lesson fundamental 
to achieving the goals of the reasoner” (Kolodner 1993, p. 13). Thus, when a case-
based reasoner has to solve a problem, she is reminded of a similar situation that 
she encountered in the past, of what she did then, and of the outcome that resulted 
in the recalled situation. She then uses that ‘similar past case’ as a basis to solve 
the problem in the present. Case-based reasoning generally consists of four main 
tasks (Aamodt and Plaza 1994): 

1. Retrieve the most similar case or cases. Generally a case in CBR is rich in in-
formation and quite complex. Aamodt and Plaza (1994) say: “a feature vector 
holding some values and a corresponding class is not what we would call a 
typical case description” (because it is too trivial). Thus, performing similarity 
judgements is an integral part of CBR. 

2. Reuse the information and knowledge in the retrieved case to solve the current 
problem. The retrieved knowledge cannot always be directly applied, so some 
adaptation is sometimes required. 

3. Revise the proposed solution. This involves the evaluation of the proposed solu-
tion.  

4. Retain the relevant information for the future – i.e. learn. 

Case-based reasoning is often used as a problem-solving technique in domains 
where the distinction between success and failure is either fairly trivial or is made 
externally. However, in decision-making contexts in general, the distinction be-
tween what is satisfactory and what is not can be far from trivial, and thus, the 
question of whether a particular decision used in the past should be repeated, or a 
new decision should be explored is crucial. This dilemma naturally gives rise to 
Simon’s notions of satisficing, as noted by Gilboa and Schmeidler (2001).  

Gilboa and Schmeidler (2001) have developed Case-Based Decision Theory 
(CBDT), a formal theory of decision based on past experiences which was initially 
inspired by case-based reasoning. Having said that, as noted by the authors, CBDT 
has not much in common with CBR beyond Hume’s basic argument that “from 
causes which appear similar we expect similar effects”. The main difference be-
tween CBR and CBDT is that while a defining feature of CBR is that “thought and 
action in a given situation are guided by a single distinctive prior case” (Loui 
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1999), in CBDT decision-makers rank available acts according to the similarity-
weighted sum of utilities that resulted in all available cases. Anyhow, like Gilboa 
and Schmeidler (2001), we do not see reasoning by cases as a substitute for ex-
pected utility theory, but as a complement: reasoning by cases seems more plausi-
ble than expected utility theory when dealing with novel decision problems, or in 
situations where probabilities cannot easily be assigned to different states of the 
world (uncertainty, as opposed to risk), or if such states of the world cannot be 
easily constructed (ignorance). 

To our knowledge, the implications of CBR in strategic contexts were explored 
for the first time by Izquierdo et al. (2004). Izquierdo et al. (2004) developed an 
agent-based model, CASD2, where individuals use a very simple form of CBR. 
The main focus of the model was to investigate the implications of reasoning by a 
single distinctive past experience in strategic environments; for that reason, issues 
like knowledge representation and similarity assessments, which are central in 
CBR, are largely ignored in CASD. 

Izquierdo et al. (2004) investigated the ability of case-based reasoners to coop-
erate in social dilemmas. Social dilemmas are especially challenging for orthodox 
game theory because the predictions of the theory in such contexts are often coun-
terintuitive and have been rejected almost invariably by empirical evidence (see, 
for instance, work reviewed by Colman (1995) in chapters 7 and 9). They also of-
fer a promising arena to distinguish the differences between reasoning by cases (or 
outcomes3) and reasoning by rules (or strategies). The following explains why. 
Although defining rational strategies in interdependent decision-making problems 
is by no means trivial, it seems sensible to assume that a) rational players choose 
dominant strategies, and b) rational players do not choose dominated strategies. 
Similarly, even though defining rational outcomes cannot be done without contro-
versy, it also seems sensible to agree that rational outcomes must be Pareto opti-
mal. Assuming only those necessary conditions for the rationality of strategies and 
outcomes, we can state that in the one-shot Prisoner’s Dilemma (PD) and other 
social dilemmas, even though there is a clear causal link between strategies and 
outcomes, rational strategies lead to outcomes which are not rational, whereas ra-
tional outcomes are generated by strategies which are not rational. 

Using their model as a “tool to think with”, Izquierdo et al. (2004) developed 
the concept of iterative elimination of dominated outcomes, which describes a 
logical process through which case-based reasoners can arrive at sensible (i.e. 
Pareto optimal) outcomes in games. Dominated outcomes are outcomes which are 
not individually rational – i.e. there is at least one player who is obtaining a payoff 
below her Maximin4. The idea behind the process of iterative elimination of domi-
nated outcomes is that players cannot rationally accept outcomes where they are 
not obtaining at least their Maximin (rational players are not exploitable). When 

                                                           
2 CASD is available online under GNU General Public Licence, together with a user guide, 

at http://www.macaulay.ac.uk/fearlus/casd/. 
3 An outcome is a particular combination of decisions, each of them made by one player. 
4 The largest possible payoff a player can guarantee themselves irrespective of the other 

players’ actions. 

http://www.macaulay.ac.uk/fearlus/casd/
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players who do not accept outcomes where they get a payoff lower than Maximin 
meet, they might learn by playing the game the fact that their opponent is not ex-
ploitable either. If this occurs, it will be mutual belief that dominated outcomes 
cannot be sustained because at least one of the players will not accept them. That 
inference (and the consequent disregard of dominated outcomes by every player) 
can make an outcome which was not previously dominated in effect be dominated. 
In other words, the concept of dominance can be applied to outcomes iteratively 
just as it is applied iteratively to strategies. 

While useful as a “tool to think with”, the specific model Izquierdo et al. (2004) 
used was unrealistic in the sense that their simulations would necessarily end up 
with the agents locked in to a persistent cycle. In this paper we advance their work 
by developing their model further. In particular, in our model, players suffer from 
trembling hands (Selten 1975) – i.e. they occasionally experiment (or make mis-
takes) with small probability. This new functionality makes the model more realis-
tic and allows us to make more specific predictions. In particular, we will charac-
terise the set of outcomes where the system spends a significant proportion of time 
in the long-term when players experiment with very low probability. Such a set of 
outcomes is a subset of the set of outcomes that can be observed in the model 
without experimentation. As an example, we will see that in the prisoner’s di-
lemma, mutual cooperation belongs to the latter set but not to the former. 

3 The model 

The model we study here is a generalisation of CASD. In our model individuals 
play repeatedly a game, once per time-step. Every time they play, each player i re-
tains a case (an experience), which comprises: 

− The time-step t when the case occurred. 
− The perceived state of the world at the beginning of time-step t, which is de-

termined by all the decisions undertaken by each player in the game (including 
the case-holder) in the preceding mi (for memory) time-steps. Thus, if there are 
n players in the game, each of whom can select one among a set of a possible 
actions, an agent with memory m will be able to identify an·m different states of 
the world. Thus, player i’s perceived state of the world at the beginning of 
time-step t consists of the mi preceding decisions made by every player. 

− The decision made by the case-holder in that situation, in time-step t, having 
observed the state of the world in that same time-step. 

− The payoff that the case-holder obtained after having decided in time-step t.  

The number of cases that players can keep in memory is unlimited. At the time 
of making a decision, players decide what action to select by retrieving the most 
recent case which occurred in a similar situation for each one of the actions avail-
able to them. This set of cases, which is potentially empty, is denoted Ci. A case is 
perceived by the player to have occurred in a similar situation if and only if its 
state of the world is a perfect match with the current state of the world observed 
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by the case-holder. Thus, the only function of the perceived state of the world is to 
determine whether two situations look similar to the player or not. In a certain 
situation (i.e. for a given perceived state of the world) any particular player i will 
face one of the following three possibilities: 

− If the set Ci is empty, player i selects one action at random. 
− If at least one action of those available to player i is represented in Ci but not all 

of them are, then player i selects randomly among those actions with the high-
est payoff obtained in the set Ci. If the selected action provided a payoff at least 
equal to player i’s Aspiration Threshold (AT), then the action is considered sat-
isfactory and will be undertaken. Otherwise, one of the actions that are not rep-
resented in Ci will be selected at random. 

− If every action available to player i is represented in Ci, then player i selects 
randomly among those actions with the highest payoff obtained in the set Ci. 

Thus, players in this model satisfice in the sense that, when making decisions in 
situations that look familiar to them, they explore new actions if and only if the 
best decision taken in similar past situations did not meet their aspirations (and 
there are new actions to try). 

As mentioned before, we also assume that players suffer from trembling hands: 
there is some small probability ε·λi  ≠ 0 that player i selects her action randomly 
instead of following the algorithm above. The ratio λi/ λj determines player i’s rela-
tive tendency to experiment compared with player j’s. The factor ε is a general 
measure of the frequency of experimentation in the whole population of players. 
The event that i experiments is assumed to be independent of the event that j ex-
periments for every i ≠ j. Different players may experiment in different ways, but 
it is assumed that player i’s probability of selecting any action a available to her 
when experimenting (qi(a)) is non-zero, potentially different for different actions, 
and independent of time for all i; these conditions can be relaxed to some extent. 
This completes the specifications of the model where players suffer from trem-
bling hands, which will be referred to as the perturbed model. 

This paper will present some mathematical results valid when the overall prob-
ability of experimentation ε tends to zero; all such results are independent of λi and 
of the particular way each of the players experiments. When presenting simulation 
results, it will be assumed that λi = 1 for all i, and that players select one of their 
actions randomly and without any bias when experimenting. 

4 Results and Discussion 

In the unperturbed model (ε = 0), players lock in to cycles, so they cannot experi-
ence all the different situations they would regard as different: they indefinitely go 
through cycles made up of a (usually small) subset of all the situations they can 
distinguish (Izquierdo et al. 2004). However, in the perturbed model every situa-
tion that players can distinctively recognise can occur with non-zero probability, 
so eventually every such situation happens, and it happens infinitely often.  
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More formally, note that both the perturbed and the unperturbed model can be 
formulated as finite-state discrete-time Markov chains, but there is a crucial dif-
ference between them: the unperturbed model will end up in one of many possible 
cycles (the period of some of these cycles is potentially equal to one), whereas the 
perturbed process has one unique limiting distribution. Thus, when players suffer 
from trembling hands, the indefinite cycles where players were locked in the un-
perturbed model are broken, and outcomes that occurred infinitely often in the un-
perturbed process (like mutual cooperation in the prisoner’s dilemma (Izquierdo et 
al. 2004)) turn out not to be robust to small trembles. In the following two sections 
we study the transient and the long-run behaviour of the perturbed process. 

4.1 Transient Dynamics 

As one would expect, the short-term dynamics of the perturbed process – i.e. when 
only a few trembles have taken place – are initially similar to the dynamics of the 
unperturbed process. How many ‘a few trembles’ are depends on the players’ 
memory and aspiration thresholds; how quickly those ‘few trembles’ occur de-
pends on the probability of trembles happening. Fig. 1 shows the proportion of 
outcomes where both players are cooperating (cooperation rate) in the Prisoner’s 
Dilemma (PD) for different values of both players’ memory m and aspiration 
threshold AT, and for different values of the overall probability of trembles ε. The 
cooperation rates shown in Fig. 1 are calculated over time-steps 1001 to 1100.  

A word of caution about Fig. 1 is that, because it shows the data collected at a 
predetermined range of time-steps (1001–1100), it represents the short-term be-
haviour of those series for which 1000 time-steps are not enough to approach their 
long-term behaviour (e.g. mi = 5) but, on the other hand, it represents the long-run 
behaviour for some other series (e.g. those series for which 1000 time-steps are 
enough to reach it, like series with mi = 0, and ε ≠ 0.001). If enough number of 
trembles have taken place in every situation distinctively perceived by any player, 
then the dynamics of the perturbed model will resemble its long-run behaviour, 
which is independent of the players’ memory and of their aspiration thresholds. 
Aspiration thresholds are irrelevant in the long-term because sooner or later all 
players will conduct every possible action in every possible situation, so their se-
lection algorithm will not take the value of their aspiration threshold into account. 
That the actual values mi are also irrelevant in the long-term can be explained as 
follows: divide the set of possible situations in the game into disjoint classes such 
that all the situations in a certain class look similar to every agent. The decision 
processes occurring within each of those classes define a finite-state irreducible 
aperiodic discrete-time Markov chain. This Markov chain is exactly the same in 
every class because the decision processes are exactly the same in any one situa-
tion. Because eventually every class will be infinitely many times revisited, every 
class will reach its asymptotic behaviour, which is the same for every class. The 
values of mi affect the number of classes, but not the decision processes within 
them so, in the long-run, the values of mi are irrelevant. 
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Fig. 1. Average proportion of outcomes where both players are cooperating in the Pris-
oner’s Dilemma (PD), calculated over 100 time-steps starting at time-step 1000, and using 
500 simulation runs for each data point. The payoffs in the game are represented by its ini-
tial letter: S for Suckers, P for Punishment, R for Reward, and T for Temptation 

Thus, for example, the long-run cooperation rate in the PD (calculated analyti-
cally) is 4.985·10–2 for ε = 0.1, 4.978·10–3 for ε = 0.01, and 4.998·10–4 for  
ε = 0.001. As we can see in Fig. 1, the series with low memory (mi = 0 or mi = 1) 
and high probability of trembles (ε = 0.1 or ε = 0.01) quickly converge to their 
limiting values; for those parameterisations 1000 time-steps are sufficient to 
closely approach the long-run behaviour of the process. If we represented the data 
in Fig. 1 after a sufficiently high number of time-steps, the value of every data 
point with ε ≠ 0 would only depend on the probability of trembles ε (and on λi and 
qi(·) generally), and it would approach the analytically calculated values presented 
above (calculated for λi = 1, and qi(·) unbiased). Something which is clear in Fig. 1 
is that whereas mutual cooperation usually forms part of the cycles in the unper-
turbed process, it cannot be sustained in the long-term when small trembles occur. 

Hence the short-term behaviour of the perturbed model is a transition from a 
distribution similar to that corresponding to the unperturbed model to a very dif-
ferent distribution which is only dependent on the probabilities with which trem-
bles occur. Thus, at the beginning of a simulation, as shown by Izquierdo et al. 
(2004) in the unperturbed model, the behaviour of the system does not only de-
pend on what is learnt by each player in any given situation, but also, and very 
strongly, on how it is learnt, and aspiration thresholds play a major role on that 
learning process. Players’ decisions lead them to situations which require new de-
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cisions, which in turn lead players to new situations. Decisions and situations in-
terweave in complex and highly path-dependent ways that are governed by the 
process by which players arrive at their final decisions for each situation. As time 
goes by, more and more trembles occur in each situation distinctively perceived 
by the players, and consequently the behaviour of the system starts to change. 
Eventually, players’ aspiration thresholds and the values of mi become irrelevant, 
so the initial mighty impacts of these parameters are lost forever in the mist of the 
past. 

4.2 Long-run behaviour 

Having seen that the asymptotic behaviour of the model is only dependent on the 
structure of trembles, a natural question is: What outcomes can be observed with 
probability bounded away from zero in the long-run as the probability of trembles 
ε tends to zero? Following Young (1993), such outcomes will be called stochasti-
cally stable. It turns out that whether an outcome is stochastically stable or not is 
independent of λi and of qi(·) (Young 1993).  

Young (1993) provides a general method to identify stochastically stable states 
in a wide range of models by solving a series of shortest path problems in a graph. 
In our model there are more states than outcomes, but identifying stochastically 
stable outcomes when the set of stochastically stable states is known is straight-
forward. Young’s method uncovers an important feature of stochastic stability: 
stochastic stability selects states which are easiest to flow into from all possible 
states of the system. This contrasts with most notions of equilibrium based on full 
rationality. As Young (1993) notes, risk dominance “selects the equilibrium that is 
easiest to flow from every other equilibrium considered in isolation”. Similarly, 
Nash stability is determined only by unilateral deviations from the equilibrium. 

In this section we present some features to identify stochastically stable out-
comes when reasoning is based on singletons of distinct prior outcomes. We start 
with a necessary condition for outcomes to be stochastically stable. 

Proposition 1. Every stochastically stable outcome is individually rational. 

Proof. Bearing in mind that players’ memory and aspiration thresholds are not relevant 
in the long-term, let us focus on a perturbed model (ε ≠ 0, λi ≠ 0, and qi(·) > 0) where every 
agent has memory mi = 0 and any arbitrary aspiration threshold. Since sooner or later all 
players will conduct every possible action, in studying the long-term behaviour of the sys-
tem there is no point in considering states of the system where some of the actions have not 
been selected yet. Therefore let us define a state of the system by the payoff obtained by 
each player the last time they conducted each of the actions available to them. (This high-
lights why aspiration thresholds are irrelevant in the long-term). The set of possible states 
may be smaller than every possible combination of payoffs, since in some games some 
combinations cannot occur in the course of a simulation. The model thus defined is a finite-
state irreducible aperiodic discrete-time Markov chain, which is denoted PP

ε. Let P0 be the 
Markov process Pε when ε = 0 (which is generally reducible). 

The proof rests on two arguments. The first argument, which is an immediate applica-
tion of theorem 4 in Young (1993), is that every stochastically stable state is a recurrent 
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state of PP

0. The second argument is that the outcome succeeding any recurrent state of P0
P  is 

necessarily individually rational. The following proves an alternative (but equivalent) for-
mulation of the second argument: if an outcome which is not individually rational can suc-
ceed state s in PP

0, then s is a transient state of P0
P . We will prove this second argument by 

showing that if an outcome which is not individually rational succeeds s, then s will never 
be revisited. Let t be the state succeeding s when an outcome which is not individually ra-
tional has occurred. Let A be one of the players who has received a payoff below her Maxi-
min after s. Let a be the action that A chose, and pt(A, a) the payoff she obtained, which is 
part of state t. Since A selected action a in state s, the payoff ps(A, a) that A attaches to ac-
tion a in state s is at least equal to her Maximin. Thus, ps(A, a) > pt(A, a). Since pt(A, a) is 
below A’s Maximin, A will never select action a ever again, so the payoff p·(A, a) that A 
will attach to action a in any subsequent state will remain unmodified. Therefore, state s, in 
which A attaches ps(A, a) to action a will never be revisited again. This completes the proof 
of the second argument, and hence the proof of the proposition. 

 

 
Fig. 2. Stochastically stable outcomes (highlighted in white) in various 2-player 2-strategy 
games. Payoffs are numeric for the sake of clarity, but only their relative order for each 
player is relevant 

Proposition 1 is a useful condition to identify outcomes which cannot be sto-
chastically stable but, except in very simple games (e.g. see Fig. 2A), it is not suf-
ficient to characterise the set of stochastically stable outcomes. To try to identify 
features that make outcomes stochastically stable we developed a computer pro-
gram5 that calculates the exact long-run probability that any 2-player game spends 
in each possible outcome when the probability of trembles tends to zero. Using 
this program, we came to the following conclusions: 

− Stochastically stable outcomes are not necessarily Nash equilibria (e.g. see the 
game of Chicken in Fig. 2B).  

− In fact, some players in some stochastically stable outcomes may be choosing 
strictly dominated strategies (e.g. see the game represented in Fig. 2C). 

− Nash equilibria are not necessarily stochastically stable (e.g. see the game of 
Stag Hunt in Fig. 2D).  

− Stochastically stable outcomes can be Pareto dominated by outcomes which are 
not stochastically stable (e.g. see the Prisoner’s Dilemma game in Fig. 2E). 
However, it can be proved that stochastically stable outcomes cannot be Pareto 
dominated by outcomes which are one tremble away and which are not stochas-
tically stable. Thus, in the game represented in Fig. 2C, for example, if we 

                                                           
5 This computer program is available online at http://www.macaulay.ac.uk/fearlus/casd/. 

http://www.macaulay.ac.uk/fearlus/casd/
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knew that outcome (3,3) is stochastically stable, then we could infer that (4,4) 
would have to be stochastically stable too. 

− Stochastically stable outcomes can Pareto dominate outcomes which are not 
stochastically stable (e.g. see game represented in Fig. 2A). 

Intuitively, note that trembles can destabilise outcomes in two different ways: 
by giving the deviator a higher (or equal) payoff, or by giving any of the non-
deviators a lower payoff6. The first possibility is related to the concept of Nash 
equilibrium, whilst the second is related to the concept of “protection” (Bendor et 
al. 2001). An outcome is protected if unilateral deviations by any player do not 
hurt any of the other players. Bendor et al. (2001) show that under a very wide 
range of conditions, reinforcement learning converges to individually rational out-
comes which are either Pareto optimal or a protected Nash equilibrium. The same 
is not true for the model we study in this paper (see the game represented in Fig. 
2F), but protected strict Nash equilibria are very relevant here too: if there is a pro-
tected strict Nash equilibrium in a game, then there is at least one state which is 
robust to any one single tremble, and the outcome that follows such state in the 
absence of trembles is the protected strict Nash equilibrium. In fact, it can be 
shown that the only stochastically stable outcome in any 2-player 2-strategy game 
with a (necessarily unique) protected strict Nash equilibrium is such equilibrium. 
The extension of this result to more general games is left for future work. 

5 Conclusions 

This paper has explored the implications in strategic contexts of reasoning by sin-
gle and distinctive past experiences as opposed to reasoning by abstract rules 
(strategies). While the short-term dynamics of models where players base their de-
cisions on past experiences are very dependent on the specifics of such models, a 
very wide range of models behave similarly in the long-term. In particular, a large 
collection of models where players experiment from time to time share the same 
set of stochastically stable outcomes (outcomes that persist in the long-run when 
trembles are very rare). 

Stochastically stable outcomes are necessarily individually rational, but a clear 
relationship between them and Nash equilibria, or Pareto optimality, has not been 
found. Nash equilibria may, or may not, be stochastically stable, and stochastically 
stable outcomes may, or may not, be Nash equilibria. The same applies for Pareto 
optimal outcomes. A concept that is indeed closely related to stochastic stability is 
the concept of protected strict Nash equilibrium. In particular, in 2-player 2-
strategy games with a protected strict Nash equilibrium (which is necessarily 
unique), the only stochastically stable is such an equilibrium. Future work will be 
devoted to investigate whether this relation holds in more general games. 

                                                           
6 Non-deviators could get a lower payoff after a tremble and still keep choosing the same 

action if the payoff obtained when the tremble occurs is higher than any of the payoffs 
that the non-deviator obtained when she last selected each of the other possible actions. 
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